Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 42, Issue 1 / 2007 | Next article >>
L. D. Akulenko, L. I. Korovina, and S. V. Nestrerov, "Natural transverse vibrations of a rotating rod," Mech. Solids. 42 (1), 1-11 (2007)
Year 2007 Volume 42 Number 1 Pages 1-11
Title Natural transverse vibrations of a rotating rod
Author(s) L. D. Akulenko (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526, Russia)
L. I. Korovina (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526, Russia)
S. V. Nestrerov (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526, Russia, kumak@ipmnet.ru)
Abstract We study the natural transverse vibration frequencies and modes of a rod rotating about an axis fixed at an end of the rod. The cases of low, moderately high, and asymptotically high angular velocities are considered. The case of a homogeneous rod with clamped left and free right end is considered in detail. A new constructive algorithm based on the notion of "sagittary function" is used to find the dependences of the natural frequencies and mode shapes on the angular velocity for lower vibration modes. We establish evolution to the model corresponding to vibrations of a rapidly rotating thread subjected to the centrifugal inertial forces. It is shown that the natural frequencies grow practically linearly with increasing angular rotation velocity. The results obtained can be of interest in technical applications, e.g., when studying vibrations of sensor elements in high-precision instruments or of rapidly rotating elongated mechanism elements (turbine or propeller blades, etc).
References
1.  P. Appel, Theoretical Mechanics. Vol. 2 (Fizmatgiz, Moscow, 1960) [in Russian].
2.  L. G. Loytsyanskii and A. I. Lur'e, Course in Theoretical Mechanics. Vol. 2 (Nauka, Moscow, 1983) [in Russian].
3.  L. D. Akulenko and N. N. Bolotnik, "On the Controlled Rotation of Elastic Rod," Prikl. Mat. Mekh. 46 (4), 587-595 (1982) [J. Appl. Math. Mech. (Engl. Transl.)].
4.  L. D. Akulenko and S. V. Nesterov, High-Precision Methods in Eigenvalue Problems and Their Applications (CRC Press Co., Boca Raton, 2005).
5.  L. D. Akulenko, G. V. Kostin, and S. V. Nesterov, "A Numerical-Analytical Method for the Analysis of Natural Vibrations of Nonhomogeneous Rods," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 180-191 (1995) [Mech. Solids (Engl. Transl.)].
6.  L. D. Akulenko and S. V. Nesterov, "Natural Transverse Vibrations of Nonhomogeneous Beams," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 179-192 (2003) [Mech. Solids (Engl. Transl.)].
7.  L. D. Akulenko and G. V. Kostin, "Perturbation Method in Problems of Dynamics of Nonhomogeneous Elastic Rods," Prikl. Mat. Mekh. 56 (3), 452-464 (1992) [J. Appl. Math. Mech. (Engl. Transl.)].
8.  S. H. Gould, Variational Methods for Eigenvalue Problems (Oxford Univ. Press, London, 1970).
Received 11 May 2006
Link to Fulltext
<< Previous article | Volume 42, Issue 1 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100