Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2007-1pp.149-156

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 42, Issue 1 / 2007 | Next article >>
I. N. Dashevskii, "To the kinetics of diffusion cracks," Mech. Solids. 42 (1), 149-156 (2007)
Year 2007 Volume 42 Number 1 Pages 149-156
Title To the kinetics of diffusion cracks
Author(s) I. N. Dashevskii (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, Russia, 119526, dash@ipmnet.ru)
Abstract For a disk-shaped crack in an infinite elastic medium and a thin disk-shaped delamination over the boundary of the half-space, as well as for similar crack-strips, we use a new unified method (based on the energy approach to the use of the Clapeyron theorem) for deriving the kinetic equations describing the growth of these defects under gas diffusion into them. An analysis of the causes for these equations to be identical permits (with several stipulations) generalizing the results obtained for these problems to several other important cases: a crack on the boundary of the adhesion junction of two compliant half-spaces with different mechanical and diffusion properties (in this case, the boundary can be either penetrable or impenetrable), taking anisotropy into account, etc. We show that precisely by the same causes (and with the same restrictions), the results obtained earlier in studying the laws of growth of a disk-shaped crack in an infinite elastic medium depending on the laws of gas influx into the crack can be generalized to the same class of cases.
References
1.  V. V. Panasyuk, A. E. Andreikin, and V. Z. Parton, Foundations of Fracture Mechanics (Fracture Mechanics and Material Strength, Reference Book, Vol. 1) (Naukova Dumka, Kiev, 1988) [in Russian].
2.  V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Fracture (Nauka, Moscow, 1985) [in Russian].
3.  G. P. Cherepanov, Mechanics of Fracture of Composite Materials (Nauka, Moscow, 1983) [in Russian].
4.  A. V. Balueva and I. N. Dashevskii, "Qualitative Estimates of Growth of Gas-Filled Cracks," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 122-128 (1995) [Mech. Solids (Engl. Transl.)].
5.  A. V. Balueva and I. N. Dashevskii, "Growth of Hydrogen Delaminations in Metals," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 119-123 (1999) [Mech. Solids (Engl. Transl.)].
6.  R. V. Goldshtein, V. M. Entov, and B. R. Pavlovskii, "A Model of Hydrogen Cracks Propagation in Metal," Dokl. Akad. Nauk SSSR 237 (4), 828-831 (1977) [Soviet Math. Dokl.].
7.  G. P. Cherepanov, Mechanics of Brittle Failure (Nauka, Moscow, 1974) [in Russian].
8.  V. I. Astaf'ev and L. K. Shiryaeva, Damage Accumulation and Corrosion Cracking of Stressed Metals (Izd-vo Samar. Univ., Samara, 1998) [in Russian].
9.  A. V. Balueva, "Spatial Problems of Crack Kinetics with the Gas Diffusion in Them Taken into Account," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 123-131 (1993) [Mech. Solids (Engl. Transl.)].
10.  A. V. Balueva and I. N. Dashevskii, Model of Growth of an Internal Gas-Filled Crack in a Material," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 113-118 (1994) [Mech. Solids (Engl. Transl.)].
11.  Fracture Toughness Testing and Its Applications, A Sympos. Presented at the Sixty-Seventh Annual Meeting, Chicago, Ill.: American Society for Testing and Materials (ASTM Special Technical Publications No. 381) (ASTM, Chicago, 1964; Mir, Moscow, 1968).
12.  Y. Murakami, Editor Stress Intensity Factors Handbook (Pergamon Press, Oxford, 1987; Mir, Moscow, 1990).
13.  I. N. Sheddon, Fourier Trasnforms (McGraw-Hill, New York, 1951; Izd-vo Inostr. Liter., Moscow, 1955).
14.  H. Liebowitz, Editor Fracture. An Advanced Treastise, Vol. 2, Mathematical Fundamentals, (Acad. Press, New York, 1968; Mir, Moscow, 1975).
15.  K. Hellan, Introduction to Fracture Mechanics (McGraw-Hill, New York, 1984; Mir, Moscow, 1988).
16.  Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1979) [in Russian].
17.  V. I. Astaf'ev, Yu. N. Radaev, and L. V. Stepanova, Nonlinear Fracture Mechanics (Izd-vo Samar. Univ., Samara, 2001) [in Russian].
18.  K. L. Johnson, Contact Mechanics (Univ. Press, Cambridge, 1987; Mir, Moscow, 1989).
19.  L. A. Galin, Contact problems of Elasticity and Viscoelasticity (Nauka, Moscow, 1980) [in Russian].
20.  L. A. Galin, Editor The Development of Theory of Contact Problems in USSR (Nauka, Moscow, 1976) [in Russian].
21.  V. I. Mossakovskii, N. E. Kachalovskaya, and S. S. Golikova, Contact Problems of Mathematical Theory of Elasticity (Naukova Dumka, Kiev, 1985) [in Russian].
22.  Yu. A. Amenzade, Theory of Elasticity (Vysshaya Shkola, Moscow, 1971) [in Russian].
Received 05 November 2004
Link to Fulltext
<< Previous article | Volume 42, Issue 1 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100