Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2006-5pp.66-129

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 41, Issue 5 / 2006 | Next article >>
M. C. Delfour, "Intrinsic differential geometric methods in the asymptotic analysis of linear thin shells," Mech. Solids. 41 (5), 66-129 (2006)
Year 2006 Volume 41 Number 5 Pages 66-129
Title Intrinsic differential geometric methods in the asymptotic analysis of linear thin shells
Author(s) M. C. Delfour (Montréal, Canada)
Abstract In earlier papers a completely intrinsic differential calculus on C1,1 submanifolds of codimension one in N has been developed by a marriage of tangential derivatives and the oriented distance function. Its potential has been illustrated by investigating some linear models of thin shells based on truncated series expansions with respect to the variable normal to the midsurface. In this paper we analyze the asymptotic behavior of three models for an arbitrary constitutive law. Given a midsurface with Lipschitzian boundary in a C1,1 submanifold of N, we show that solutions of the intrinsic linear P(1,1), P(2n,1) and P(2,1) models of thin shells converge to solutions of asymptotic shell models which consist of a coupled system of two variational equations. The first is the asymptotic P(1,0) model which yields the generally accepted classical membrane shell equation and the Love-Kirchhoff terms. The second is a generalized bending equation. In the bending dominated case and for the special constitutive law specified by two Lamé constants, the quadratic term of the second equation of the asymptotic P(2n,1) and P(2,1) models is the classical bending dominated equation. Also Naghdi's model is an approximation of the reduced P(2,1) model and Koiter's is a projection of Naghdi's. A detailed analysis of the three asymptotic models is given: existence and spaces of solutions, decomposition of the equations, and construction of the associated effective constitutive laws. Strong/weak convergence is established in the natural spaces and norms under an assumption on the asymptotic behavior of the constant of continuity of the right-hand side for shells without boundary or shells with homogeneous Neumann boundary conditions (quotient space) or homogeneous Dirichlet boundary conditions on a part of the boundary.
References
1.  E. Acerbi, G. Buttazzo, and D. Percivale, "A variational definition for the strain energy of an elastic string," J. Elasticity, Vol. 25, pp. 137-148, 1991.
2.  S. M. Alessandrini, Some Two-Dimensional Plate Models: Derivation, Asymptotic Properties, and Numerical Approximation. Ph.D. Thesis, Rutgers University, New Brunswick, New Jersey, 1991.
3.  S. M. Alessandrini, D. N. Arnold, R. S. Falk, and A. L. Madureira, "Derivation and justification of plate models by variational methods," in M. Fortin (Editor), "Plates and Shells", CRM Proc. Lect. Notes ser., Vol. 21, pp. 1-20, AMS Publications, Providence, R.I., 1999.
4.  M. Bernadou, Méthodes d'éléments finis pour les problèmes de coques minces, Masson, Paris, Milan, Barcelone, 1994.
5.  M. Bernadou, Ph. G. Ciarlet, and B. Miara, "Existence theorems for two-dimensional linear shell theories," J. Elasticity, Vol. 34, pp. 111-138, 1994.
6.  A. Blouza, "Existence et unicité pour le modèle de Naghdi pour une coque peu régulière," C. R. Acad. Sci. Paris Sér. I Math., Vol. 324, pp. 839-844, 1997.
7.  A. Blouza and H. Le Dret, "Existence and uniqueness for the linear Koiter model for shells with little regularity," Quart. Appl. Math., Vol. 57, No. 2, pp. 317-337, 1999.
8.  F. Bourquin, Ph. G. Ciarlet, G. Geymonat, and A. Raoult, "Γ-convergence et analyse asymptotique des plaques minces," C. R. Acad. Sci. Paris Sér. I Math., Vol. 315, pp. 1017-1024, 1992.
9.  F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, Berlin, Heidelberg, 1991.
10.  D. Chapelle and K.-J. Bathe, "Fundamental considerations for the finite element analysis of shell structures," Computers and structures, 1997 (submitted).
11.  C. Chen, Asymptotic Convergence Rates for the Kirchhoff Plate Model. Ph.D. Thesis, University Park, Pennsylvania, Penn. State, 1995.
12.  D. Chenais and J.-C. Paumier, "On the locking phenomenon for a class of elliptic problems," Numer. Math., Vol. 67, pp. 427-440, 1994.
13.  Ph.G. Ciarlet, Plates and Junctions in Elastic Multi-Structures: an Asymptotic Analysis, Springer-Verlag, Berlin, New York, 1990.
14.  Ph. G. Ciarlet and V. Lods, "Ellipticité des équations membranaires d'une coque uniformément elliptique," C. R. Acad. Sci. Paris Sér. I Math., Vol. 318, pp. 195-200, 1994.
15.  Ph. G. Ciarlet and V. Lods, "Analyse asymptotique des coques linéairement élastique. I. Coques membranaires," C. R. Acad. Sci. Paris Sér. I Math., Vol. 318, pp. 863-868, 1994.
16.  Ph. G. Ciarlet and V. Lods, "Analyse asymptotique des coques linéairement élastique. III. Une justification du modèle de Koiter," C. R. Acad. Sci. Paris Sér. I Math., Vol. 319, pp. 299-304, 1994.
17.  Ph. G. Ciarlet and V. Lods, "On the ellipticity of linear membrane shell equations," J. Math. Pures Appl., Vol. 75, pp. 107-124, 1996.
18.  Ph. G. Ciarlet and V. Lods, "Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations," Arch. Rational Mech. Anal., Vol. 136, pp. 191-200, 1996.
19.  Ph. G. Ciarlet and V. Lods, "Asymptotic analysis of linearly elastic shells. Generalized membrane shells," J. Elasticity, Vol. 43, pp. 147-188, 1996.
20.  Ph. G. Ciarlet and V. Lods, "Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations," Arch. Rational Mech. Anal., Vol. 136, pp. 116-161, 1996.
21.  Ph. G. Ciarlet, V. Lods, and B. Miara, "Analyse asymptotique des coques linéairement élastique. II. Coques en flexion," C. R. Acad. Sci. Paris Sér. I Math., Vol. 319, pp. 95-100, 1994.
22.  Ph. G. Ciarlet, V. Lods, and B. Miara, "Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations," Arch. Rational Mech. Anal., Vol. 136, pp. 163-190, 1996.
23.  Ph. G. Ciarlet and É. Sanchez-Palencia, "Un théorème d'existence et d'unicité pour les équations des coques membranaires," C. R. Acad. Sci. Paris Sér. I Math., Vol. 317, pp. 801-805, 1993.
24.  Ph. G. Ciarlet and É. Sanchez-Palencia, "An existence and uniqueness theorem for the two-dimensional linear membrane shell equations," J. Math. Pures Appl., Vol. 75, pp. 51-67, 1996.
25.  M. Dauge, Complete Asymptotics in Thin Elastic Plates and Optimal Estimates for Kirchhoff-Love Model. Prépublication 95-06, Institut de Recherche Mathématique de Rennes, Université de Rennes, février 1995.
26.  M. Dauge and I. Gruais, "Développement asymptotique d'ordre arbitraire pour une plaque élastique mince encastrée," C. R. Acad. Sc. Paris Sér. I Math., Vol. 321, pp. 375-380, 1995.
27.  M. C. Delfour, "Intrinsic P(2,1) thin shell model and Naghdi's models without a priori assumption on the stress tensor," in K. H. Hoffmann, G. Leugering, and F. Tröltzsch (Editors), Proc International Conference on Optimal Control of Partial Differential Equations. Int. Ser. Of Numerical Mathematics, Vol. 133, pp. 99-113, Birkhäuser Verlag, Basel, 1999.
28.  M. C. Delfour, "Membrane shell equation: characterization of the space of solutions," in Shuping Chen, Xunjing Li, Jiongmin Yong, and Xun Yu Zhou (Editors), Control of Distributed Parameter and Stochastic Systems, pp. 21-29, Chapman and Hall, New York, 1999.
29.  M. C. Delfour, "Characterization of the space of the membrane shell equation for arbitrary C1,1 midsurfaces," Control and Cybernetics, Vol. 28, No. 3, pp. 481-501, 1999.
30.  M. C. Delfour, "Tangential differential calculus and functional analysis on a C1,1 submanifold," in R. Gulliver, W. Littman and R. Triggiani (Editors), Differential-Geometric Methods in the Control of Partial Differential Equations. Contemporary Mathematics, AMS Publications, in press.
31.  M. C. Delfour and J.-P. Zolésio, "Shape analysis via distance functions," J. Funct. Anal., Vol. 123, pp. 129-201, 1994.
32.  M. C. Delfour and J.-P. Zolésio, "On a variational equation for thin shells," Control and Optimal Design of Distributed Parameter Systems (J. Lagnese, D. L. Russell, and L. White, eds.), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 25-37, 1994.
33.  M. C. Delfour and J.-P. Zolésio, "A boundary differential equation for thin shells," J. Differential Equations, Vol. 119, pp. 426-449, 1995.
34.  M. C. Delfour and J.-P. Zolésio, "Tangential differential equations for dynamical thin/shallow shells," J. Differential Equations, Vol. 128, pp. 125-167, 1996.
35.  M. C. Delfour and J.-P. Zolésio, "Differential equations for linear shells: comparison between intrinsic and classical models," in Luc Vinet (Editor), Advances in Mathematical Sciences-CRM's 25 years. CRM Proc. Lecture Notes, pp. 42-124, AMS Publications, Providence, RI, 1997.
36.  M. C. Delfour and J.-P. Zolésio, "Shape analysis via distance functions: local theory," in M. Delfour (Editor), Boundaries, interfaces and transitions. CRM Proc. Lect. Notes Ser., pp. 91-123, AMS Publications, Providence, R.I., 1998.
37.  M. C. Delfour and J.-P. Zolésio, "On the design and control of systems governed by differential equations on submanifolds," Control Cybernet., Vol. 25, pp. 497-514, 1996.
38.  M. C. Delfour and J.-P. Zolésio, "Hidden boundary smoothness for some classes of differential equations on submanifolds," in S. Cox and I. Lasiecka (Editors), Optimization Methods in Partial Differential Equations. Contemp. Math., Vol. 209, pp. 59-73, AMS Publications, Providence, R.I., 1997.
39.  M. C. Delfour and J.-P. Zolésio, Intrinsic Differential Geometry and Theory of Thin Shells. Lecture Notes. Version 1.0, Scuola Normale Superiore, Pisa (Italy), August 1996.
40.  M. C. Delfour and J.-P. Zolésio, "Convergence to the asymptotic model for linear thin shells," in S. Cox and I. Lasiecka (Editors), Optimization Methods in Partial Differential Equations Contemp. Math., Vol. 209, AMS Publications, Providence, R.I., 1977.
41.  M. C. Delfour and J.-P. Zolésio, "Convergence of the linear P(1,1) and P(2,1) thin shells to asymptotic shells," in M. Fortin (Editor), Plates and Shells. CRM Proc. Lect. Notes Ser., Vol. 21, pp. 125-158, AMS Publications, Providence, R.I., 1999.
42.  Ph. Destuynder, Sur la Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques. Doctoral dissertation, Université Pierre et Marie Curie, 1980.
43.  Ph. Destuynder, Modélisation des Coques Minces Élastiques, Masson, Paris, Milan, Barcelone, 1990.
44.  Ph. Destuynder, Une Théorie Asymptotique des Plaques Minces en Elasticité Linéaire, Masson, Paris, Milan, Barcelone, 1986.
45.  H. Federer, "Curvature measures," Trans. Amer. Math. Soc., Vol. 93, pp. 418-419, 1959.
46.  D. D. Fox, A. Raoult, and J. C. Simo, "A justification of nonlinear properly invariant plate theories," Arch. Rational Mech. Anal., Vol. 124, pp. 157-199, 1993.
47.  D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
48.  H. Le Dret and A. Raoult, "The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity," J. Math. Pures Appl., Vol. 74, pp. 549-578, 1995.
49.  H. Le Dret and A. Raoult, "The membrane shell model in nonlinear elasticity: a variational asymptotic derivation," J. Nonlinear Sci., Vol. 6, pp. 59-84, 1996.
50.  K. H. Lo, R. M. Christensen, and E. M. Wu, "A high-order theory of plate deformations," J. Appl. Mech., Vol. 46, pp. 663-676, 1977.
51.  C. Mardare, "Modèles bi-dimensionnels de coques linéairement élastiques: estimations de l'écart entre leurs solutions," C. R. Acad. Sc. Paris Sér. I Math., Vol. 322, pp. 793-796, 1996.
52.  C. Mardare, "Estimation d'erreur dans l'analyse asymptotique des coques linéairement élastiques," C. R. Acad. Sc. Paris Sér. I Math., Vol. 322, pp. 895-898, 1996.
53.  D. Morgenstern, "Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie," Arch. Rational Mech. Anal., Vol. 4, pp. 145-152, 1959.
54.  P. M. Naghdi, "Foundations of elastic theory," Progress in Solid Mechanics, Amsterdam, North-Holland, Vol. 4, pp. 1-90, 1963.
55.  P. M. Naghdi, "The theory of shells and plates," Handbuch des Physik, Springer-Verlag, Berlin, Vol. VI a-2, pp. 425-640, 1972.
56.  J.-C. Paumier and A. Raoult, "Asymptotic consistency of the polynomial approximation in the linearized plate theory. Application to the Reissner-Mindlin model," in Élasticité, viscoélasticité et contrôle optimal (Lyon, 1995), ESAIM Proc., 2, Soc. Math. Appl. Indust., Paris, pp. 203-213 (electronic), 1997.
57.  J. Piila, "Characterization of the membrane theory of a clamped shell. The hyperbolic case," Math. Models and Methods Appl. Sci., Vol. 6, pp. 169-194, 1996.
58.  J. Pitkaranta, "The problem of membrane locking in finite element analysis of cylindrical shells," Numer. Math., Vol. 61, pp. 523-542, 1992.
59.  É. Sanchez-Palencia, "Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée," C. R. Acad. Sc. Paris Sér. I Math., Vol. 309, pp. 411-417, 1989.
60.  É. Sanchez-Palencia, "Statique et dynamique des coques minces. II. Cas de flexion pure inhibée - Approximation membranaire," C. R. Acad. Sc. Paris Sér. I Math., Vol. 309, pp. 531-537, 1989.
61.  É. Sanchez-Palencia, "Surfaces et coques élastiques minces: problèmes et défis," La Vie des Sciences, Vol. 12, No. 3, pp. 239-258, 1995.
62.  J. Sanchez-Hubert and É. Sanchez-Palencia, Coques Élastiques Minces, propriétés asymptotiques, Masson, Paris, 1997.
63.  R. Valid, The Nonlinear Theory of Shells Through Variational Principles, Wiley, Chichester, 1995.
Received 15 January 2005
<< Previous article | Volume 41, Issue 5 / 2006 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100