Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2005-4pp.69-89

Archive of Issues

Total articles in the database: 11223
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8011
In English (Mech. Solids): 3212

<< Previous article | Volume 40, Issue 4 / 2005 | Next article >>
G. I. Kanel, S. V. Razorenov, and V. E. Fortov, "Submicrosecond strength of materials," Mech. Solids. 40 (4), 69-89 (2005)
Year 2005 Volume 40 Number 4 Pages 69-89
Title Submicrosecond strength of materials
Author(s) G. I. Kanel (Moscow)
S. V. Razorenov (Moscow)
V. E. Fortov (Moscow)
Abstract A brief review of recent results related to deformation and fracture of metals and alloys subjected to shock-wave loads is presented. The issue of achieving an ideal strength of a condensed substance and the experimental data related to the influence of the structural factors and temperature on the resistance to high-speed deformation and fracture are discussed. Abnormal increase in the dynamic yield strength of high-purity low-strength metals, as the testing temperature increases, as well as the crystal state overheating and pre-melting effects due to stretching, have been established. It is shown that hardening imperfections of the structure weaken the dependence of yield strength on the strain rate. The differences in the rate dependence can be so significant that in some cases the transition from the quasi-static to high-speed loading can change the sense of the influence of the structural factors.
References
1.  Ya. B. Zel'dovich and Yu. P. Raizer, The Physics of Shock Waves and High-temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow, 1966.
2.  G. I. Kanel, S. V. Razorenov, S. V. Utkin, and V. E. Fortov, Shock-wave Phenomena in Condensed Media [in Russian], Yanus-K, Moscow, 1996.
3.  T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture, N. Y., Springer, 2003.
4.  G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter, N. Y., Springer, 2004.
5.  L. M. Barker and R. E. Hollenbach, "Shock wave study of phase transition in iron," J. Appl. Phys., Vol. 45, No. 11, pp. 4872-4887, 1974.
6.  S. V. Razorenov, A. A. Bogach, and G. I. Kanel, "The influence of the thermal processing and polymorphic transformations on the dynamic strength of steel 40Kh," Fizika Metallov i Metallovedenie, Vol. 83, No. 1, pp. 147-152, 1997.
7.  G. I. Kanel, "Distortion of wave profiles under spall in an elastoviscous body," Zh. Prikl. Mekhaniki i Tekhn. Fiziki, Vol. 42, No. 2, pp. 194-198, 2001.
8.  G. N. Epshtein and O. A. Kaibyshev, High-speed Deformation and Structure of Metals [in Russian], Metallurgiya, Moscow, 1971.
9.  V. K. Golubev and S. A. Novikov, "On the influence of the thermal processing on the impact strength of steel 40Kh," Problemy Prochnosti, No. 4, pp. 41-44, 1984.
10.  B. M. Butcher, "Spallation in 4340 Steel," Trans. ASME. Ser. E. J. Appl. Mech., Vol. 34, pp. 209-210, 1967.
11.  A. K. Zurek and P. S. Follansbee, "Microstructural effects on Spall Fracture in 1008 Steel," Shock Compression of Condensed Matter - 1989 / Eds. S. C. Schmidt et al., N. Y., Els. Sci., pp. 433-436, 1990.
12.  A. K. Zurek, P. S. Follansbee, and J. Hack, "High Strain-Rate-Induced Cleavage Fracture in Mild Carbon Steel," Metallurg. Trans., Vol. 21A, pp. 431-439, 1990.
13.  G. I. Kanel, S. V. Razorenov, A. V. Utkin, V. E. Fortov, K. Baumung, H. U. Karow, D. Rush, and V. Licht, "Spall Strength of Molybdenum Single Crystals," J. Appl. Phys., Vol. 74, No. 12, pp. 7162-7165, 1993.
14.  E. Moshe, S. Eliezer, E. Dekel, A. Ludmirsky, Z. Henis, M. Werdiger, I. B. Goldberg, N. Eliaz, and D. Eliezer, "An increase of the spall strength in aluminium, copper, and Metglas at strain rates larger than 107 s1," J. Appl. Phys., Vol. 83, No. 8, pp. 4005-4011, 1998.
15.  G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, "Dynamic yield and tensile strength of aluminium single crystals at temperatures of state," J. Appl. Phys., Vol. 90, No. 1, pp. 136-143, 2001
16.  S. Eliezer, E. Moshe, and D. Eliezer, "Laser-induced tension to measure the ultimate strength of metals related to the equation of state," Laser and Particle Beams, Vol. 20, No. 1, pp. 87-92, 2002.
17.  G. V. Sin'ko and N. A. Smirnov, "The calculaton of the equation of state and elastic constants for aluminum in the negative pressure region proceeding from the first principles," Pis'ma v ZhETF, Vol. 75, No. 4, pp. 217-220, 2002.
18.  D. M. Clatterbuck, D. C. Chrzan, and Jr. J. W. Morris, "The influence of triaxial stress on the ideal tensile strength of iron," Scripta Materialia, Vol. 49, pp. 1007-1011, 2003.
19.  G. I. Kanel, S. V. Razorenov, A. A. Bogatch, A. V. Utkin, V. E. Fortov, and D. E. Grady, "Spall Fracture Properties of Aluminium and Magnesium at High Temperatures," J. Appl. Phys., Vol. 79, No. 11, pp. 8310-8317, 1996.
20.  G. I. Kanel and S. V. Razorenov, "Anomalies in temperature dependencies of volume and shear strength of aluminum monocrystals in the submicrosecond range," Fizika Tverdogo Tela, Vol. 43, No. 5, pp. 839-845, 2001.
21.  K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, "Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures," Intern. J. Impact Eng., Vol. 26, No. 7, pp. 631-639, 2001.
22.  S. V. Razorenov, G. I. Kanel, and V. E. Fortov, "Submicrosecond strength of aluminum and alloy AMg6M at normal and elevated temperatures," Fizika Metallov i Metallovedenie, Vol. 95, No. 1, pp. 91-96, 2003.
23.  S. V. Razorenov, G. I. Kanel, and V. E. Fortov, "Dynamic strength of copper monocrystals," Doklady AN SSSR, Vol. 315, No. 3, pp. 609-611, 1990.
24.  D. L. Tonks, D. J. Alexander, S. A. Sheffield, D. L. Robbins, A. K. Zurek, and W. R. Thissell, "Spallation strength of single crystal and polycrystalline copper," J. Phys. IV France, Vol. 10, No. 9, pp. 787-792, 2000.
25.  S. V. Razorenov, G. I. Kanel, and V. E. Fortov, "Iron at high negative pressures," Pis'ma v ZhETF, Vol. 80, No. 5, pp. 395-397, 2004.
26.  I. P. Parkhomenko and A. V. Utkin, "Spall fracture of organic glass," in The Study of Properties of Substances in Extreme Conditions [in Russian], p. 126, IVTAN, Moscow, 1990.
27.  A. A. Bogach and A. V. Utkin, "Strength of water for impulsive tension," Zh. Prikl. Mekhaniki i Tekhn. Fiziki, Vol. 41, No. 4, pp. 198-205, 2000.
28.  R. M. Lynden-Bell, "A simulation study of induced disorder, failure and fracture of perfect metal crystals under uniaxial tension," J. Phys.: Condens. Matter, Vol. 7, pp. 4603-4624, 1995.
29.  J. Belak, "On the nucleation and growth of voids at high strain-rates," J. Computer-Aided Materials Design, Vol. 5, pp. 193-206, 1998.
30.  R. E. Rudd and J. F. Belak, "Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: an atomistic simulation," Comput. Mater. Sci., Vol. 24, pp. 148-153, 2002.
31.  J. Marian, J. Knap, and M. Ortiz, "Nanovoid Cavitation by Dislocation Emission in Aluminium," Phys. rev. Letters, Vol. 93, No. 16, 165503, 2004.
32.  A. Yu. Kuksin, I. V. Morozov, G. E. Norman, and V. V. Stegailov, "Standart of molecular dynamics modeling and simulation of relaxation in dense media," Lectures Notes in Computer Science / (LNCS), series 3039, Eds. M. Budak et al. Berlin: Springer, Vol. 3039, pp. 596-603, 2004.
33.  G. I. Kanel, "On the thermal limit of the dynamic strength of metals," Teplofizika Vysokikh Temperatur, Vol. 38, No. 3, pp. 512-515, 2000.
34.  J. D. Dash, "History of the search of continuous melting," Rev. Modern Phys., Vol. 71, No. 5, pp. 1737-1743, 1999.
35.  G. Besold and O. G. Mouritsen, "Grain-boundary melting: A Monte-Carlo study," Phys. Rev. B., Vol. 50, No. 10, pp. 6573-6576, 1994.
36.  A. A. Bogach, G. I. Kanel, S. V. Razorenov, A. V. Utkin, S. G. Protasova, and V. G. Sursaeva, "Resistance of monocrystalline zinc to shock-wave deformation and fracture at elevated temperatures," Fizika Tverdogo Tela, Vol. 40, No. 10, pp. 1849-1854, 1998.
37.  A. Kumar and R. G. Kumble, "Viscous drag on dislocations at high strain rates in copper," J. Appl. Phys., Vol. 40, No. 9, p. 3475, 1969.
38.  K. Sakino, "Transition in the rate controlling nehanism of FCC metals at very high strain rates and high temperatures," J. Phys. IV France, Vol. 10, No. 9, pp. 57-62, 2000.
39.  L. Krüger, L. Meyer, S. V. Razorenov, and G. I. Kanel, "Investigation of dynamic flow and strength properties of Ti-6-2-22S at normal and elevated temperatures," Intern. J. Impact Eng-ng, Vol. 28, No. 8, pp. 877-890, 2003.
40.  L. Krüger, G. I. Kanel, S. V. Razorenov, L. Meyer, and G. S. Bazrouchko, "Yield and strength properties of the Ti-6-2-22S alloy over a wide strain rate nd temperature range," in M. D. Furnish et al. (Editors), Shock Compression of Condensed Matter 2001, CP 620, pp. 1327-1330, Amer. Institute of Physics, New York, 2002.
41.  D. R. Curran, L. Seaman, and D. A. Shockey, "Dynamic failure of solids," Phys. reports (Review Section of Physics Letters), Vol. 147, No. 5, 6, pp. 254-388, 1987.
42.  J. L. Tallon and A. Wolfeden, "Temperature dependence of the elastic constants of aluminium," J. Phys. Chem. Solids, Vol. 40, pp. 831-837, 1987.
43.  R. Berner and H. Kronmueller, Plastic Deformation of Single Crystals [Russian translation], Mir, Moscow, 1969.
44.  T. Sudzuki, Kh. Esinaga, and S. Takueti, Dislocation Dynamics and Plasticity [Russian translation], Mir, Moscow, 1989.
45.  J. A. Moriarty, V. Vitek, V. V. Bulatov, and S. Yip, "Atomic simulations of dislocations and defects," J. Computer-Aided Materials Design, Vol. 9, pp. 99-132, 2002.
46.  J. Chang, W. Cai, V. V. Bulatov, and S. Yip, "Dislocation motion in BCC metals by molecular dynamics," Mater. Sci. and Eng-ng, Vol. A309-310, pp. 160-163, 2001.
47.  D. Mordehai, Y. Ashkenazy, and I. Kelson, "Dynamics properties of screw dislocations in Cu: A molecular dynamics study," Phys. Rev. B., Vol. 67, pp. 024112, 2003.
48.  P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Voids in Solids [in Russian], Energoatomizdat, Moscow, 1990.
49.  T. Hatano, "Dislocation Nucleation in Shocked FCC Solids: Effects of temperature and Preexisting Voids," Phys. Rev. Letters, Vol. 93, No. 8, pp. 085501, 2003.
50.  G. I. Kanel, S. V. Razorenov, E. B. Zaretskii, B. Herrmann, and L. Mayer, "Thermal softening and hardening of titanium and its alloy under high-speed shock-wave deformation," Fizika Tverdogo Tela, Vol. 45, No. 4, pp. 625-629, 2003.
51.  T. Yokokawa, K. Ohno, H. Murakami, T. Kobayashi, T. Yamagata, and H. Harada, "Accurate measurements of lattice misfit between γ and γ' phases in nickel-base superalloys at high temperatures," Adv. in X-Ray Analysis, Vol. 39, pp. 449-456, 1997.
52.  M. Feller-Kniepmeier, T. Link, I. Poschmann, G. Scheunemann-Frerker, and C. Schulze, "Temperature dependence of deformation mechanisms in a single crystal nickel-base alloy with high volume fraction of γ' phase," Acta. Mater., Vol. 44, No. 6, pp. 2397-2407, 1996.
53.  E. B. Zaretsky, G. I. Kanel, S. V. Razorenov, and K. Baumung, "Impact strength properties of nickel-based refractory superalloys at normal and elevated temperatures," Intern. J. Impact Eng-ng, Vol. 31, No. 1, pp. 41-54, 2005.
54.  D. Bettge, W. Osterle, J. Ziebs, "Temperature dependence of yield strength and elongation of the nickel-base superalloy IN 738 LC and the corresponding microstructural evolution," Z. Metallkd. (Germany), Vol. 86, No. 3, pp. 190-197, 1995.
55.  C. R. Brooks, M. Cash, and A. Carcia, "The heat capacity of Inconel 718 from 313 to 1053K," J. Nuclear Materials, Vol. 78, No. 2, pp. 419-421, 1978.
56.  Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovitskaya, et al., Grain-boundary Diffusion of Nanostructured Materials [in Russian], Nauka, Novosibirsk, 2001.
57.  S. V. Razorenov, A. S. Savinykh, E. B. Zaretskii, G. I. Kanel, and Yu. R. Kolobov, "The influence of the preliminary strain hardening on the flow stress of titanium and titanium alloy subjected to shock compression," Fizika Tverdogo Tela, Vol. 47, No. 4, pp. 639-645, 2005.
58.  N. Morozov and Y. Petrov, Dynamics of Fracture, Berlin ets., Springer, 2000.
59.  Yu. V. Petrov, "Incubation time criterion and impulsive strength of continuous media: fracture, cavitation, and electric breakdown," Doklady AN, Vol. 395, No. 5, pp. 246-249, 2004.
60.  A. A. Gruzdkov, Yu. V. Petrov, and V. I. Smirnov, "An invariant form of the dynamic yield criterion for metals," Fizika Tverdogo Tela, Vol. 44, No. 11, pp. 1987-1989, 2002.
61.  Yu. V. Petrov and E. V. Sitnikova, "Effect of abnormal melting temperatures under shock-wave loading," Doklady AN, Vol. 400, No. 4, pp. 480-482, 2005.
62.  Ya. I. Frenkel', Kinetic Theory of Fluids [in Russian], Nauka, Leningrad, 1975.
63.  V. P. Skripov, Metastable Fluid [in Russian], Nauka, Moscow, 1972.
Received 08 April 2005
<< Previous article | Volume 40, Issue 4 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100