Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2005-4pp.45-59

Archive of Issues

Total articles in the database: 12937
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4853

<< Previous article | Volume 40, Issue 4 / 2005 | Next article >>
R. V. Goldstein and A. V. Chentsov, "Discrete-continuous model of a nanotube," Mech. Solids. 40 (4), 45-59 (2005)
Year 2005 Volume 40 Number 4 Pages 45-59
Title Discrete-continuous model of a nanotube
Author(s) R. V. Goldstein (Moscow)
A. V. Chentsov (Moscow)
Abstract A method for constructing a macroscopic model of a specimen, with its atomic structure being taken into account, is presented. A multi-scale model is developed for a carbon nanotube and a graphite plane. The behavior of this model under deformation is similar to that of the atomic model. A method for the calculation of the elastic moduli of a nanotube regarded as a transversely isotropic medium is proposed. This model is realized in the computer program that has been used for numerical experiments. The computed values of the shear modulus, Young's modulus, and transverse compression modulus are in good agreement with the experimental data available from publications, theoretical calculations, and molecular dynamics simulation results. The elastic properties of hexagonal plane segments and those of separate nanotubes have been investigated experimentally. A complete set of elastic moduli have been obtained for one type of nanotubes. A model of a nanotube in a polymer matrix is proposed and analyzed. The assessment of the influence of the type of interaction of the nanotube with the matrix on the axial stiffness of the nanotube is verified.
References
1.  S. Iijima, "Helical microtubules of graphitic carbon," Nature, London, No. 354, pp. 56-58, 1991.
2.  P. M. Ajayan, O. Stephan, C. Cooliex, and D. Trauth, "Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite," Science, No. 265, p. 1212, 1994.
3.  H. D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix," Appl. Phys. Lett., No. 72, pp. 188-190, 1998.
4.  L. Jin, C. Bower, and O. Zhou, "Alignment of carbon nanotubes in a polymer matrix by mechanical stretching," Appl. Phys. Lett.,Vol. 73, p. 1197, 1998.
5.  L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, "Load transfer in carbon nanotube epoxy composites," Appl. Phys. Lett., No. 73, p. 3842, 1999.
6.  C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, "deformation of Carbon Nanotubes in Nanotube-Polymer Composites," Appl. Phys. Lett., No. 74, p. 3317, 1999.
7.  P. Calvert, "Nanotube composites: A recipe for strength," Nature, No. 399, p. 210, 1999.
8.  P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, "Mechanical response of carbon nanotubes in polymer nanocomposites," Adv. Mater., No. 12, p. 750, 2000.
9.  B. I. Yakobson, "Mechanical relaxation and "intramolecular plastiity" in carbon nanotubes," Appl. Phys. Lett., No. 72, p. 918, 1998.
10.  A. J. Stone and D. J. Wales, "Theoretical studies of icosahedral C60 and some related species," Chem. Phys. Lett., No. 128, p. 501, 1986.
11.  M. B. Nardelli, J.-L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao, and J. Bernholc, "Mechanical properties, defects and electronic behavior of carbon nanotubes," Carbon, No. 38, pp. 1703-1711, 2000.
12.  B. I. Yakobson, G. Gamsonidze, and G. G. Samsonidze, "Atomic theory of mechanical relaxation in fullerene nanotubes," Carbon, No. 38, pp. 1675-1680, 2000.
13.  Ge. G. Gamsonidze, G. G. Gamsonidze, and B. I. Yakobson, "Energetics of Stone-Wales defects in deformations of monoatomic hexagonal layers," Comp. Mat. Sci., No. 23, pp. 62-72, 2002.
14.  H. Bethe, Quantum Mechanics [Russian translation], Mir, Moscow, 1965.
15.  D. W. Brenner, "Empirical potential for hydrocarbons for use in simulation the chemical vapor deposition of diamond films," Phys. Rev. Ser. B., No. 42, pp. 9458-9471, 1990.
16.  J. Tersoff, "New empirical model for the structural properties of silicon," Phys. Rev. Lett., No. 56, p. 632, 1986.
17.  J. Tersoff, "New empirical approach for the structure and energy of covalent systems," Phys. Rev. B., No. 37, pp. 6991-7000, 1988.
18.  D. H. Robertson, D. W. Brenner, and J. W. Mintmire, "Energetics of nanoscale graphitic tubules," Phys. Rev. B., No. 45, pp. 12592, 1992.
19.  P. Zhang, Y. Huang, P. H. Geubelle, P. A. Klein, and K. C. Hwang, "The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials," Int. J. Solids Struct., No. 39, pp. 3893-3906, 2002.
20.  J. Che, T. Cagin, and W. A. Goddart, "Generalized extended empirical bond-order dependent force fields including nonbond interactions," Theor. Chem. Acc., Vol. 102, pp. 346-354, 1999.
21.  J. Che, T. Cagin, and W. A. Goddart, "Studies of fullerenes and carbon nanotubes by an extended bond order potential," Nanotechnology, No. 10, pp. 263-268, 1999.
22.  A. D. Jr. MacKerrell, et al., "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins," J. Phys. Chem. B., No. 102, pp. 3586-3616, 1998.
23.  N. Foloppe and A. D. Jr. MacKerrell, "All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Targed Data," J. Comput. Chem., No. 21, pp. 86-104, 2000.
24.  J. T. Sprague, J. C. Tai, Y. Yuh, and N. L. Allinger, "The MMP2 Calculational Method," J. Comput. Chem., No. 8, pp. 581-603, 1987.
25.  N. L. Allinger, R. A. Kok, and M. R. Imam, "Hydrogen Bonding in MM2," J. Comput. Chem., No. 9, pp. 591-595, 1988.
26.  N. L. Allinger, Y. Yuh, and J.-H. Lii, "Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1," J. Am. Chem. Soc., No. 111, pp. 8551-8566, 1989.
27.  N. L. Allinger, F. Li, and L. Yan, "Molecular Mechanics. The MM3 Force Fields for Alkenes," J. Comput. Chem., No. 11, pp. 848-867, 1990.
28.  J.-H. Lii and N. L. Allinger, "Directional Hydrogen Bonding in the MM3 Force Field. I," J. Phys. Org. Chem., No. 7, pp. 591-609, 1994.
29.  J.-H. Lii and N. L. Allinger, "Directional Hydrogen Bonding in the MM3 Force Field. II," J. Comput. Chem., No. 19, pp. 1001-1016, 1998.
30.  W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, "Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids," J. Am. Chem. Soc., No. 117, pp. 11225-11236, 1996.
31.  G. M. Odegard, T. S. Gates, L. M. Nocholson, and K. E. Wise, "Equivalent-Continuum Modeling of Nano-Structured Materials," NASA Langley Research Center: Technical Memorandum NASA / TM-2001-210863, 2001.
32.  G. M. Odegard, T. S. Gates, L. M. Nocholson, and K. E. Wise, "Equivalent-Continuum Modeling With Application to Carbon Nanotubes," NASA Langley Research Center: Technical Memorandum NASA / TM-2002-211454, 2002.
33.  A. S. Vol'mir. Stability of Deformable Systems [in Russian], Nauka, Moscow 1967.
Received 18 March 2005
<< Previous article | Volume 40, Issue 4 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100