Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2005-3pp.83-97

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 40, Issue 3 / 2005 | Next article >>
S. A. Korneev, "Constitutive relations for viscoelastoplastic materials at small strains," Mech. Solids. 40 (3), 83-97 (2005)
Year 2005 Volume 40 Number 3 Pages 83-97
Title Constitutive relations for viscoelastoplastic materials at small strains
Author(s) S. A. Korneev (Omsk)
Abstract A thermomechanical approach to the modeling of viscoelastoplastic materials at small strains is presented which allows the experimentally observed effect of strain rate hardening of materials, resulting in the dynamic yield stress exceeding the static yield stress, to be described. An analysis of P. Perzyna's viscoplasticity equations is carried out first, the equations being presented in an alternative, though mathematically equivalent, form which agrees with A. A. Il'yushin's macroscopic determinability principle.

The dynamic yield criteria (in stress and strain spaces) are derived, together with the relationships for the irreversible strain variation laws which are shown to coincide with the associated plastic flow rules. The results obtained agree with the classical ones. For the corresponding material parameters, the Tresca-Saint-Venant, Huber-Mises, Ishlinskii-Prager, and Kadashevich-Novozhilov yield criteria are obtained, as well as the Ivlev-Ishlinskii, Kaliszky, and Perzyna dynamic yield surfaces. The constitutive relations considered cover, as the limiting cases, the Kelvin, Maxwell, and Voigt viscoelastic body models. The approach developed enables also the elastic (mechanical) hysteresis to be taken into account.
References
1.  W. Nowacki, Stress Waves in Non-elastic Solids [Russian translation], Mir, Moscow, 1978.
2.  P. Perzyna, Fundamentals of Viscoplasticity [Russian translation], Mir, Moscow, 1968.
3.  V. N. Kukudzhanov, "Wave propagation in elastic-viscoplastic materials with a general stress-strain diagram," Izv. AN. MTT [Mechanics of Solids], No. 5, pp. 96-111, 2001.
4.  A. A. Il'yushin, Continuum Mechanics [in Russian], Izd-vo MGU, Moscow, 1978.
5.  Yu. I. Yagn and O. A. Shishmarev, "Some results of studying the boundaries of the elastic state in plastically stretched nickel samples," Doklady AN SSSR, Vol. 119, No. 1, pp. 46-48, 1958.
6.  I. N. Izotov and Yu. I. Yagn, "Study of the plastic deformation of a metal with strain anisotropy created by preloading," Doklady AN SSSR, Vol. 139, No. 3, pp. 576-579, 1961.
7.  H. J. Ivey, "Plastic stress-strain relations and yield surfaces for aluminum alloys," J. Mech. Eng. Sci., Vol. 3, No. 1, pp. 15-31, 1961.
8.  I. N. Zverev, "Propagation of disturbances in a viscoelastic and viscoplastic rod," PMM [Applied Mathematics and Mechanics], Vol. 14, pp. 295-302, 1950.
9.  E. I. Shemyakin, "Propagation of nonlinear disturbances in a viscoelastic medium," Doklady AN SSSR, Vol. 104, No. 1, pp. 34-37, 1995.
10.  P. M. Ogibalov and A. Kh. Mirzadzhanzade, Unsteady Motions of Viscoplastic Media [in Russian], Izd-vo MGU, Moscow, 1970.
11.  A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media [in Russian], Mosk. Litsei, Moscow, 1998.
12.  L. I. Sedov, Continuum Mechanics [in Russian], Nauka, Moscow, 1973.
13.  B. D. Anin and V. M. Zhigalkin, Behavior of Materials Subjected to Complex Loading [in Russian], Izd-vo SO RAN, Novosibirsk, 1999.
14.  A. Yu. Ishlinskii and D. D. Ivlev, Mathematical Theory of Plasticity [in Russian], Fizmatlit, Moscow, 2001.
15.  A. Yu. Ishlinskii, Applied Problems in Mechanics. Book 1. Mechanics of Viscoplastic and Imperfectly Elastic Bodies [in Russian], Nauka, Moscow, 1986.
16.  L. M. Kachanov, Fundamentals of Plasticity Theory [in Russian], Nauka, Moscow, 1969.
17.  N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow, 1975.
18.  A. G. Kostyuk, Plasticity and Fracture of a Crystal Material Subjected to Complex Loading [in Russian], Izd-vo MEI, Moscow, 2000.
19.  D. Kolarov, A. Baltov, and N. Boncheva, Mechanics of Plastic Media [Russian translation], Mir, Moscow, 1979.
20.  Yu. N. Rabotnov, Creep in Structural Members [in Russian], Nauka, Moscow, 1966.
21.  V. V. Novozhilov and Yu. I. Kadashevich, Microstresses in Structural Materials, Mashinostroenie, Leningrad, 1990.
Received 17 September 2002
<< Previous article | Volume 40, Issue 3 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100