Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2005-4pp.98-112

Archive of Issues

Total articles in the database: 12937
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4853

<< Previous article | Volume 40, Issue 4 / 2005 | Next article >>
R. S. Novokshanov and A. A. Rogovoi, "Evolutionary constitutive relations for finite viscoelastic strains," Mech. Solids. 40 (4), 98-112 (2005)
Year 2005 Volume 40 Number 4 Pages 98-112
Title Evolutionary constitutive relations for finite viscoelastic strains
Author(s) R. S. Novokshanov (Perm)
A. A. Rogovoi (Perm)
Abstract On the basis of kinematic relations for the superposition of small elastic and small viscous strains on finite viscoelastic strains, general evolutionary constitutive relations of viscoelasticity are obtained with the corotational derivatives which are compatible with these relations. The equations are further elaborated on for the particular case of the elastic law for a weakly compressible material, and linearly-viscous law for the stretch rate of the viscous component. Thermodynamic consistency of these constitutive relations is demonstrated. By using the structural mechanics approach, a model for a weakly compressible viscoelastic solid body possessing a discrete relaxation time spectrum is developed. The model parameters are identified on the basis of the experimental data for a realistic material. Predictive capabilities of the model are tested by solving the problem of simple shear under compression.
References
1.  R. S. Novokshanov, and A. A. Rogovoi, "On the construction of evolutionary constitutive relations for finite strains," Izv. AN. MTT [Mechanics of Solids], No. 4, pp. 77-95, 2002.
2.  C. Truesdell, A First Course in Rational Continuum Mechanics [Russian translation], Mir, Moscow, 1975.
3.  R. W. Ogden, Non-Linear Elastic Deformations. Horwood, Chichester, 1984.
4.  L. Anand, "A constitutive model for compressible elastomeric solids," Comput. Mech., Vol. 18, pp. 339-355, 1996.
5.  J. Lambert-Diani, and C. Rey, "New phenomenological behaviour laws for rubber and thermoplastic elastomers," Eur. J. Mech. A. Solids, Vol. 18, pp. 1027-1043, 1999.
6.  V. V. Moshev, A. L. Svistkov, O. K. Garishin, et al, Structural Mechanisms of the Formation of Mechanical Properties of Granular Polymer Composites [in Russian], Izd-vo UrO RAN, Ekaterinburg, 1997.
7.  V. G. Kuznetsova, and A. A. Rogovoi, "The influence of weak material compresisbility in the problems of elasticity with finite strains," Izv. AN. MTT [Mechanics of Solids], No. 4, pp. 64-77, 1999.
8.  A. A. Rogovoi, and V. G. Kuznetsova, "The influence of weak compresisbility of elastomers. Axisymmetric problem. Analytical solution," Izv. AN. MTT [Mechanics of Solids], No. 6, pp. 27-37, 2000.
9.  A. A. Rogovoi, "Effect of elastomer slight compresisbility," Eur. J. Mech. A. Solids, Vol. 20, pp. 757-775, 2001.
10.  S. Cescotto and G. Fonder, "A finite element approach for large strain of nearly incompressible rubber-like materials," Int. J. Solids Struct., Vol. 15, pp. 589-605, 1979.
11.  A. I. Lur'e, Nonlinear Elasticity Theory [in Russian], Nauka, Moscow, 1980.
12.  A. A. Rogovoi, "Differentiation of scalar and tensor functions of a tensor argument," Vestn. Perm GTU, Dinamika i Prochnost' Mashin [in Russian], No. 2, pp. 83-90, PermGTU, Perm, 2001.
13.  P. Haupt, A. Lion, E. Backhaus, "On the dymanic behaviour of polymers under finite strains: constitutive modelling and identification of parameters," Int. J. Solids Struct., Vol. 37, pp. 3633-3646, 2000.
14.  G. A. Holzapfel, and J.C. Simo, "A new viscoelastic constitutive model for continuous media at finite thermomechanical changes," Int. J. Solids Struct., Vol. 33, pp. 3019-3034, 1996.
15.  A. Lion, "On the large deformation behaviour of reinforced rubber at different temperatures," J. Mech. Phys. Solids, Vol. 45, pp. 1805-1834, 1997.
16.  A. Lion, "A physically based method to represent the thermomechanical behaviour of elastomers," Acta Mech., Vol. 123, pp. 1-25, 1997.
17.  C. Mieche, and J. Keck, "Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation," J. Mech. Phys. Solids, Vol. 48, pp. 323-365, 2000.
18.  B. Nedjar, "Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part I: Continuum formulations," Comput. Methods Appl. Mech. Engrg., Vol. 191, pp. 1541-1562, 2002.
19.  S. Reese, and S. Govindjee, "A theory of finite viscoelasticity and numerical aspects," Int. J. Solids Struct., Vol. 35, pp. 3455-3482, 1998.
20.  J. S. Bergstrom, and M. C. Boyce, "Constitutive modeling of the large strain time-dependent behavior of elastomers," J. Mech. Phys. Solids, Vol. 46, pp. 931-954, 1998.
21.  M. C. Boyce, S. Socrate, and P. G. Llana, "Constitutive model for the finite deformation stress-strain behavior of poly(ethylene terephtalate) above the glass transition," Polymer, Vol. 41, pp. 2183-2201, 2000.
22.  L. I. Sedov, Continuum Mechanics. Volume 2. [in Russian], Nauka, Moscow, 1973.
23.  V. A. Palmov, "Large strains in viscoelastoplasticity," Acta Mech., Vol. 125, pp. 129-139, 1997.
24.  V. A. Pal'mov, "Comparison of deformation decomposition methods in non-linear viscoelasticity and elastoplasticity," in Elasticity and Inelasticity [in Russian], pp. 81-87, Izd-vo MGU, Moscow, 2001.
25.  R. Christensen,Introduction to Theory of Viscoelasticity [Russian translation], Mir, Moscow, 1974.
26.  J. Bonet, "Large strain viscoelastic constitutive models," Int. J. Solids Struct., Vol. 38, pp. 2953-2968, 2001.
27.  T. A. Trevoort, R. J. M. Smith, W. A. M. Brekelmans, and L. E. Govaert, "A constitutive equation for the elastoviscoplastic deformation of glassy polymers," Mech. Time-Dependent Mater., Vol. 1, pp. 269-291, 1998.
29.  G. B. Kuznetsov, and A. A. Adamov, "Development of phenomenological equations of non-linear creep theory of a filled polymer," in Research Report of the Institute of Continuum Mechanics of the Urals Branch of the Russian Academy of Sciences. Volume 2 [in Russian], Izd-vo UrO RAN, Perm, 1975.
30.  A. A. Adamov, V. P. Matveenko, N. A. Trufanov, and I. N. Shardakov, Methods of Applied Viscoelasticity [in Russian], Institute of Continuum Mechanics of the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, 2003.
Received 11 July 2003
<< Previous article | Volume 40, Issue 4 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100