Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2004-1pp.88-120

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 39, Issue 1 / 2004 | Next article >>
D. V. Georgievskii, D. M. Klimov, and B. E. Pobedrya, "Specific features of the behavior of viscoelastic models," Mech. Solids. 39 (1), 88-120 (2004)
Year 2004 Volume 39 Number 1 Pages 88-120
Title Specific features of the behavior of viscoelastic models
Author(s) D. V. Georgievskii (Moscow)
D. M. Klimov (Moscow)
B. E. Pobedrya (Moscow)
Abstract The major problem of solid mechanics is the modeling of the deformation processes. The models can be divided into two classes-scleronomic models and rheonomic models. The constitutive relations of the scleronomic models are time-invariant. The rheonomic models are described by operator relations that explicitly depend on time. The simplest rheonomic physically linear model in the solid mechanics is the model of a viscoelastic body that describes relaxation (the reduction in the stress at constant strain) and creep (the increase in the strain at constant stress). The model of a linear viscoelastic body takes into account the energy dissipation due to heat release during the deformation of the body, as well as other effects that are not accounted for by other models.

To a great extent, the foundation of the modern theory of viscoelasticity has been laid by an outstanding scientist Yu. N. Rabotnov [1]. This theory has the extensive literature; see, e.g., the monographs [1-17] many of which have become classical textbooks. The enhancement in engineering requires the possibilities for the modeling to be extended. This is the case, in particular, for the model of linear viscoelastic body. To give a review of such a modeling is just the purpose of the present paper.
References
1.  Yu. N. Rabotnov, The Creep in Structural Members [in Russian], Nauka, Moscow, 1966.
2.  L. M. Kachanov, The Theory of Creep [in Russian], Fizmatgiz, Moscow, 1960.
3.  D. R. Bland, The Theory of Linear Viscoelasticity, Pergamon Press, London, 1960.
4.  J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, London, 1961.
5.  M. Reiner, Rheology, Springer, Berlin, 1958.
6.  A. R. Rzhanitsyn, The Theory of Creep [in Russian], Stroiizdat, Moscow, 1968.
7.  A. A. Il'yushin and B. E. Pobedrya, Fundamentals of the Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow, 1970.
8.  Yu. N. Rabotnov and S. T. Mileiko, Short-term Creep [in Russian], Nauka, Moscow, 1970.
9.  W. A. Day, The Thermodynamics of Simple Materials with Fading Memory, Springer, Berlin, Heidelberg, New York, 1972.
10.  V. V. Moskvitin, The Strength of Viscoelastic Materials as Applied to Solid Fuel Rocket Engine Charges [in Russian], Nauka, Moscow, 1972.
11.  I. I. Bugakov, The Creep of Polymer Materials [in Russian], Nauka, Moscow, 1973.
12.  F. K. G. Odquist, Mathematical Theory of Creep and Creep Rupture, Clarendon Press, Oxford, 1974.
13.  N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow, 1975.
14.  P. M. Ogibalov, V. A. Lomakin, B. P. Kishkin, Mechanics of Polymers [in Russian], Izd-vo MGU, Moscow, 1975.
15.  V. A. Postnov, Theory of Plasticity and Creep [in Russian], Izd-vo Leningradsk. Korablestroit. In-ta, Leningrad, 1975.
16.  W. Fluegge, Viscoelasticity, Springer, New York, 1975.
17.  M. A. Koltunov, Creep and Relaxation [in Russian], Vysshaya Shkola, Moscow, 1976.
18.  Yu. N. Rabotnov, Fundamentals of Hereditary Mechanics of Solids [in Russian], Nauka, Moscow, 1977.
19.  G. N. Savin, Mechanics of Solids [in Russian], Naukova Dumka, Kiev, 1970.
20.  H. Kraus, Creep Analysis, Wiley, New York, 1980.
21.  A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymer and Composite Materials [in Russian], Zinatne, Riga, 1980.
22.  M. E. Gurtin, An Introduction to Continuum Mechanics, Acad. Press, New York, 1981.
23.  K. N. Rusinko, Theory of Plasticity and Unsteady Creep [in Russian], Vishcha Shkola, Lvov, 1981.
24.  R. M. N. Christensen, Theory of Viscoelasticity. An Introduction, Acad. Press, New York, London, 1971.
25.  Yu. S. Urzhumtsev, Prediction of Long-term Strength in Polymer Materials [in Russian], Nauka, Moscow, 1982.
26.  H. Ruesch, D. Junfwirth and H. Hilsdorf, Creep and Shrinkage: Their Effect on the Behavior, Springer, New York, 1983.
27.  N. Kh. Arutyunyan and V. B. Kolmanovskii, Theory of Creep of Inhomogeneous Bodies [in Russian], Nauka, Moscow, 1983.
28.  J. Čadek, Creep kovových materiálu, Academia, Praha, 1984.
29.  A. S. Kravchuk, V. P. Maiboroda, and Yu. S. Urzhumtsev, Mechanics of Polymer and Composite Materials [in Russian], Nauka, Moscow, 1985.
30.  A. C. Pipkin, Lectures on Viscoelasticity Theory, Springer, New York, Berlin, 1986.
31.  G. Z. Sharafutdinov, Photoviscoelasticity [in Russian], Izd-vo MGU, Moscow, 1987.
32.  A. A. Il'yushin, Continuum Mechanics [in Russian], Izd-vo MGU, Moscow, 1990.
33.  I. I. Bugakov and I. I. Demidova, The Method of Photothermoviscoelasticity [in Russian], Izd-vo SPbGU, St. Petersburg, 1970.
34.  B. E. Pobedrya, Numerical Methods in Elasticity and Plasticity [in Russian], Izd-vo MGU, Moscow, 1993.
35.  A. D. Drozdov, Viscoelastic Structures, Acad. Press, San Diego, 1998.
36.  S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Derivatives and Integrals and some their Applications [in Russian], Nauka i Tekhnika, Minsk, 1987.
37.  I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, Acad. Press, San Diego, 1999.
38.  L. B. Eldred, W. P. Baker, and A. N. Palazotto, "Kelvin-Voigt vs fractional derivative models as constitutive relations for viscoelastic materials," AIAA Journal, Vol. 33, No. 3, pp. 547-550, 1995.
39.  N. Shimizu and M. Iijima, "Fractional differential model of viscoelastic material," Trans. Japan Soc. Mech. Eng., Ser. C, Vol. 62, No. 604, pp. 4447-4451, 1996.
40.  Y. A. Rossikhin and M. V. Shitikova, "Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems," Acta Mech., Vol. 120, No. 1-4, pp. 109-125, 1997.
41.  A. D. Drozdov, "Fractional differential models in finite viscoelasticity," Acta Mech., Vol. 124, No. 1-4, pp. 155-180, 1997.
42.  M. Enelund, L. Maehler, K. Runesson, and B. L Josefson, "Formulation and integration of the standard linear viscoelastic solids with fractional order rate laws," Intern J. Solids and Structures, Vol. 36, No. 16, pp. 2417-2442, 1999.
43.  S. W. J. Welch, R. A. L. Rorrer, and R. G. Duren, "Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials," Mech. Time-depend. Mater., Vol. 3, No. 3, pp. 279-303, 1999.
44.  T. A. Surguladze, "One application of fractional Green's function," Izv. AN. MTT [Mechanics of Solids], No. 1, pp. 53-60, 2001.
45.  T. A. Surguladze, "On certain applications of fractional calculus to viscoelasticity," J. Math. Sci., Vol. 112, No. 5, pp. 4517-4557, 2002.
46.  M. Enelund, A. Fenander, and P. Olsson, "Fractional integral formulation of constitutive equations of viscoelasticity," AIAA Journal, Vol. 35, No. 8, pp. 1356-1362, 1997.
47.  B. E. Pobedrya, "Energy dissipation in viscoelasticity," Vestnik MGU [Bulletin of the Moscow State University], Ser. 1. Matematika, Mekhanika, No. 4, pp. 35-46, 2003.
48.  M. Fabrizio, "On the inversion of a linear viscoelastic constitutive equation," Math. Appl., Vol. 3, No. 2, pp. 141-148, 1992.
49.  G. Matarazzo, "Time-irreversibility and existence and uniqueness of solutions of problems in linear viscoelasticity," Ukr. Mat. Zh., Vol. 52, No. 7, pp. 923-930, 2000.
50.  S. W. Park and R. A. Schapery, "Methods of interconversion between linear viscoelastic material functions. Part 1. A numerical method based on Prony series," Intern J. Solids and Structures, Vol. 36, No. 11, pp. 1653-1675, 1999.
51.  R. A. Schapery and S. W. Park, "Methods of interconversion between linear viscoelastic material functions. Part 2. An approximate analytical method," Intern J. Solids and Structures, Vol. 36, No. 11, pp. 1677-1699, 1999.
52.  V. A. Pal'mov, "Rheological models in nonlinear solid mechanics," Uspekhi Mekhaniki [Advances in Mechanics], Vol. 3, No. 3, pp. 75-115, 1980.
53.  J. Egan, "A new look at linear visco-elasticity," Mater. Letters, Vol. 31, No. 3-6, pp. 351-357, 1997.
54.  A. A. Il'yushin and P. M. Ogibalov, "Some generalizations of the Voigt and Maxwell models," Mekhanika Polimerov, No. 2, pp. 190-196, 1966.
55.  G. Del Piero and L. Deseri, "Monotonic, completely monotonic, and exponential relaxation functions in linear viscoelasticity," Quart. Appl. Math., Vol. 53, No. 2, pp. 273-300, 1995.
56.  A. Morro and M. Fabrizio, "Further inequalities for viscoelastic relaxation functions," Mech. Res. Comm., Vol. 22, No. 4, pp. 349-353, 1995.
57.  S. Hazanov, "New class of creep-relaxation functions," Intern J. Solids and Structures, Vol. 32, No. 2, pp. 165-172, 1995.
58.  F. Akyildiz, R. S. Jones, and K. Walters, "On the spring-dashpot representation of linear viscoelastic behavior," Rheol. Acta, Vol. 29, No. 5, pp. 482-484, 1990.
59.  G. V. Vorontsov and A. I. Reznichenko, "On the relationship between the matrices of linear differential and integral models of a viscoelastic body subject to the spatial stress-strain state," Izv. Vuzov Severo-Kavkaz. Regiona. Tekhn. Nauki, No. 3, pp. 99-100, 1998.
60.  G. N. Savin and Ya. Ya. Rushchitskii, Fundamentals of Mechanics of Hereditary Media [in Russian], Vishcha Shkola, Kiev, 1976.
61.  P. Mazilu, "On the constitutive law of Boltzmann-Volterra," Rev. Roum. Math. Pure Appl., Vol. 18, No. 7, pp. 1067-1069, 1973.
62.  N. I. Malinin, "Creep of structural members from polymer materials," Zh. Prikl. Mekhaniki i Tekhn. Fiziki, No. 2, pp. 109-125, 1970.
63.  P. S. Theocaris, "Creep and relaxation contraction ratio of linear viscoelastic materials," J. Mech. and Phys. Solids, Vol. 12, No. 3, pp. 125-138, 1964.
64.  G. N. Maslov, "Thermal stress state of concrete blocks with the creep of the concrete being taken into account," Izv. NIIG, Vol. 28, pp. 175-188, 1941.
65.  I. I. Ulitskii, Creep of Concrete [in Russian], Ukrsgostekhizdat, Kiev, Lvov, 1948.
66.  V. A. Florin, "One-dimensional problem of the compaction of a soil, with the ageing, nonlinear creep, and fracture of the structure being taken into account," Izv. AN SSSR. ONT, No. 9, pp. 1229-1234, 1953.
67.  A. A. Il'yushin, "An experimental method fro solving one integral equation of viscoelasticity," Mekhanika Polimerov, No. 4, pp. 584-587, 1969.
68.  N. N. Malinin, Creep Design of Engineering Structural Elements [in Russian], Mashinostroenie, Moscow, 1981.
69.  Yu. E. Yakubovskii, "On the determination of the creep kernels for ageing materials," Prikladnaya Mekhanika, Vol. 27, No. 6, pp. 37-44, 1991.
70.  A. D. Drozdov, "On constitutive laws for ageing materials at finite strains," Europ. J. Mech., Ser. A, Vol. 12, No. 3, pp. 305-324, 1993.
71.  V. M. Pestrikov, "On the constitutive relations for ageing materials with the physical and chemical processes being taken into account," Izv. AN. MTT [Mechanics of Solids], No. 4, pp. 134-140, 1999.
72.  V. A. Palmov, "General principles of nonlinear rheology and typical mistakes in applications," in Transactions of SPbAN on Strength Issues [in Russian], Vol. 1, pp. 126-139, 1997.
73.  A. I. Leonov, On the Description of Rheological Behavior of Elastoviscous Media at Large Elastic Strains. Preprint 34 [in Russian], Institute for Problems in Mechanics of the USSR Academy of Sciences, Moscow, 1973.
74.  V. G. Gromov, Instability, Bifurcations, and Catastrophes of Steady-state Motions of Hereditary Solids [in Russian], D.Sc. Dissertation, Tul'sk. Politekhn. In-t, Tula, 1984.
75.  V. G. Gromov, "A method for constructing constitutive relations for viscoelastic bodies subject to finite strains," Doklady AN SSSR, Vol. 285, No. 1, pp. 69-73, 1985.
76.  D. Durban, D. G. Zeitoun, and H. E. Banaim, "Finite linear viscoelasticity," J. Eng. Mech., Vol. 116, No. 11, pp. 2449-2462, 1990.
77.  V. A. Palmov, "Large strains in viscoelastoplasticity," Acta Mech., Vol. 125, No. 1-4, pp. 129-139, 1997.
78.  S. Reese and S. Govindjee, "A theory of finite viscoelasticity and numerical aspects," Int. J. Solids and Structures, Vol. 35, No. 26-27, pp. 3455-3482, 1998.
79.  R. A. Schapery, "Nonlinear viscoelastic solids," Int. J. Solids and Structures, Vol. 37, No. 1-2, pp. 359-366, 1999.
80.  V. A. Palmov, "Comparison of different approaches in viscoelastoplasticity for large strains," ZAMM, Vol. 80, No. 11-12, pp. 801-806, 2000.
81.  J. Bonet, "Large strain viscoelastic constitutive models," Int. J. Solids and Structures, Vol. 38, No. 1-2, pp. 2953-2968, 2001.
82.  A. A. Il'yushin and P. M. Ogibalov, "Quasilinear theory of viscoelasticity and the small parameter method," Mekhanika Polimerov, No. 2, pp. 170-189, 1966.
83.  B. E. Pobedrya, "On the state equations in nonlinear viscoelasticity," Mekhanika Polimerov, No. 3, pp. 427-435, 1967.
84.  B. E. Pobedrya, "Mathematical theory of nonlinear viscoelasticity," in Elasticity and Inelasticity [in Russian], Issue 3, pp. 95-173, Izd-vo MGU, Moscow, 1973.
85.  B. E. Pobedrya, "Numerical methods in viscoelasticity," Mekhanika Polimerov, No. 3, pp. 417-428, 1973.
86.  Yu. A. Basistov and Yu. G. Yanovskii, "On the identification of mathematical models of viscoelastic media in rheology and electrorheology," Mekhanika Kompozitsionnykh Materialov i Konstruktsii, Vol. 7, No. 1, pp. 114-130, 2001.
87.  M. Grasselli, "Identifying relaxation kernels in linearly viscoelastic bodies," J. Inverse Ill-posed Probl., Vol. 4, No. 5, pp. 391-407, 1996.
88.  S. A. Shesterikov and A. M. Lokoshscenko, "Creep and long-term strength of metals," in Achievements in Science and Technology. Ser. Mechanics of Solids [in Russian], Vol. 13, pp. 3-104, VINITI, Moscow, 1980.
89.  O. E. Ol'khovik, "Different-modulus theory of creep," Izv. Vuzov. Mashinostroenie, No. 10-12, pp. 21-25, 1994.
90.  L. A. Zlochevskaya and A. N. Sklepus, "Energy-based version of the theory of creep of metals that possess different strength for tension and compression," Problemy Prochnosti, No. 2, pp. 108-115, 2001.
91.  Yu. G. Basalov, V. N. Kuznetsov, and S. A. Shesterikov, "Constitutive relations for a rheonomous material," Izv. AN. MTT [Mechanics of Solids], No. 6, pp. 69-81, 2000.
92.  B. E. Pobedrya, "Thermodynamics of viscoelastic models," in Applied Mathematics and Programming [in Russian], Issue 1, pp. 75-86, Izd-vo AN MSSR, Kishinev, 1969.
93.  D. L. Bykov, A. A. Il'yushin, P. M. Ogibalov, and B. E. Pobedrya, "Some basic problems of thermoviscoelasticity," Mekhanika Polimerov, No. 1, pp. 41-58, 1971.
94.  I. I. Gol'denblat and V. L. Bazhanov, "Thermodynamic theory of creep," in Elasticity and Inelasticity [in Russian], Issue 2, pp. 202-218, Izd-vo MGU, Moscow, 1971.
95.  B. E. Pobedrya, "On coupled problems in solid mechanics," in Elasticity and Inelasticity [in Russian], Issue 2, pp. 224-253, Izd-vo MGU, Moscow, 1971.
96.  S. Hassani, A. Alauoi Soulimani, and A. Ehrlacher, "A nonlinear viscoelastic model: The pseudo-linear model," Europ. J. Mech., Ser. A, Vol. 17, No. 4, pp. 567-598, 1998.
97.  D. L. Bykov and D. N. Konovalov, "Determination of material functions in the nonlinear theory of thermoviscoelasticity using its hierarchical structure," Izv. AN. MTT [Mechanics of Solids], No. 5, pp. 189-205, 1999.
98.  A. I. Murdoch, "Remarks on the foundations of linear viscoelasticity," J. Mech. Phys. Solids, Vol. 40, No. 7, pp. 1559-1568, 1992.
99.  Z. Sobotka, "Differential equations and their integrals following from viscoelasticity," Acta Techn. CSAV, Vol. 39, No. 6, pp. 675-710, 1994.
100.  Z. Sobotka, "Związk róžnickowe i calcowe w lepkospręžystości," Zecz. Nauk. Mech., No. 115, pp. 367-372, 1994.
101.  G. A. Sviridyuk and T. G. Sukacheva, "Remarks on linear models of viscoelastic media," Vestnik Chelyabinsk. Un-ta, Ser. Matematika i Mekhanika, No. 1, pp. 135-147, 1996.
102.  J. Brilla, "Laplace transform and new mathematical theory of viscoelasticity," Meccanica, Vol. 32, No. 3, pp. 187-195, 1997.
103.  A. A. Kaminskii and I. Yu. Podil'chuk, "A method for solving boundary-value problems of linear viscoelasticity," Prikladnaya Mekhanika, Vol. 34, No. 12, pp. 77-85, 1998.
Received 30 September 2003
<< Previous article | Volume 39, Issue 1 / 2004 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100