Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2004-1pp.56-64

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 39, Issue 1 / 2004 | Next article >>
A. A. Kulikov and S. N. Nazarov, "Correspondence principle in plane problems of rectilinear crack growth," Mech. Solids. 39 (1), 56-64 (2004)
Year 2004 Volume 39 Number 1 Pages 56-64
Title Correspondence principle in plane problems of rectilinear crack growth
Author(s) A. A. Kulikov (St. Petersburg)
S. N. Nazarov (St. Petersburg)
Abstract It is shown that the processes of quasistatic rectilinear crack growth in plane orthotropic algebraically equivalent materials occur in a similar manner. A correspondence principle is formulated for media whose elastic and strength characteristics are related by the same affine transformation. Some relations are discovered between stress singularity exponents for anisotropic wedges with clamped or free faces. Some relevant examples are discussed.
References
1.  S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Bodies [in Russian], Nauka, Moscow, 1977.
2.  N. B. Alfutova, A. B. Movchan, and S. A. Nazarov, "Algebraic equivalence of plane problems for orthotropic and anisotropic media," Vestnik LGU, Ser. 1, Vol. 3, No. 15, pp. 64-68, 1991.
3.  A. A. Kulikov, S. A. Nazarov, and M. A. Narbut, "Affine transformations in the plane problem of anisotropic elasticity," Vestnik SPbGU, Ser. 1, Vol. 3, No. 8, pp. 91-95, 2000.
4.  S. A. Nazarov, "Derivation of a variational inequality for the shape of small increment of a tensile crack," Izv. AN SSSR. MTT [Mechanics of Solids], No. 2, pp. 152-160, 1989.
5.  S. A. Nazarov, "Interaction of cracks under brittle fracture. Load and Energy Approaches," PMM [Applied Mathematics and Mechanics], Vol. 64, No. 3, pp. 484-496, 2000.
6.  I. I. Argatov and S. A. Nazarov, "A Comparison of the Griffith and Irwin criteria for a non-symmetrically growing crack in a plane," Fiz.-Khim. Mekh. Mater., Vol. 36, No. 4, pp. 77-82, 2000.
7.  V. Z. Parton and E. M. Morozov, Mechanics of Elastic-Plastic Fracture [in Russian], Nauka, Moscow, 1974.
8.  G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow, 1974.
9.  S. A. Nazarov, "A crack at the juncture of anisotropic bodies. Stress singularities and invariant integrals," PMM [Applied Mathematics and Mechanics], Vol. 62, No. 3, pp. 489-502, 1998.
10.  S. A. Nazarov and O. P. Polyakova, "Fracture criteria, asymptotic conditions at crack tips and self-adjoint solutions of the Lamé operator," Trudy Moskov. Matem. Ob-va, Vol. 57, pp. 16-75, 1996.
11.  S. A. Nazarov, "Weight functions and invariant integrals," Vychisl. Mekh. Deform. Tverd. Tela, No. 1, pp. 17-31, 1990.
12.  H. F. Bueckner, "A novel principle for the computation of stress intensity factor," ZAMM, Vol. 50, No. 9, pp. 529-546, 1970.
13.  V. G. Maz'ja and B. A. Plamenevskii, "On coefficients in asymptotic formulas for solutions of elliptic boundary value problems in domains with conical points," Math. Nachr., Bd. 76, S. 29-60, 1977.
14.  E. M. Morozov, "A variational principle in fracture mechanics," Doklady AN SSSR, Vol. 184, No. 6, pp. 1308-1311, 1969.
15.  S. Nemat-Nasser, Y. Sumi, and L. M. Keer, "Unstable growth of tension cracks in brittle solids: Stable and unstable bifurcations, snap-through and imperfection sensitivity," Int. J. Solids and Struct., Vol. 16, No. 11, pp. 1017-1033, 1980.
16.  L. I. Sedov, Continuum Mechanics [in Russian], Nauka, Moscow, 1976.
17.  Yu. A. Bogan, "Asymptotic behavior of boundary value problems for an elastic ring reinforced by fibers of very high rigidity," Zh. Prikl. Mekhaniki i Tekhn. Fiziki, No. 6, pp. 118-122, 1980.
18.  Yu. A. Bogan, "Some variational problems of elasticity with a small parameter," PMM [Applied Mathematics and Mechanics], Vol. 49, No. 4, pp. 604-607, 1985.
19.  S. G. Lekhnitskii, Anisotropic Plates [in Russian], Gostekhizdat, Moscow, 1957.
20.  S. A. Ambartsumian, Theory of Anisotropic Plates. Strength, Stability, and Vibrations [in Russian], Nauka, Moscow, 1987.
21.  B. A. Shoikhet, "On asymptotically precise equations of thin plates of complex structure," PMM [Applied Mathematics and Mechanics], Vol. 37, No. 5, pp. 914-924, 1973.
22.  S. A. Nazarov, "Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (shallow shell)," Matem. Sbornik, Vol. 191, No. 7, pp. 129-159, 2000.
Received 23 July 2001
<< Previous article | Volume 39, Issue 1 / 2004 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100