Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2004-1pp.153-160

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 39, Issue 1 / 2004 | Next article >>
A. G. Zhilenkov, S. M. Kapustyanskii, and V. N. Nikolaevskii, "Critical fracture velocity effects for the dynamic expansion of a cavity in a brittle material," Mech. Solids. 39 (1), 153-160 (2004)
Year 2004 Volume 39 Number 1 Pages 153-160
Title Critical fracture velocity effects for the dynamic expansion of a cavity in a brittle material
Author(s) A. G. Zhilenkov (St. Petersburg)
S. M. Kapustyanskii (St. Petersburg)
V. N. Nikolaevskii (St. Petersburg)
Abstract The mathematical modeling of the explosive fracture of brittle materials (for example, rocks) involves the concept of the moving fracture front behind which the material acquires properties corresponding to its new (fragmented) state. The existence of the fracture front as a strong discontinuity surface has been validated by experiments with transparent materials. To obtain a complete solution of appropriate boundary-value problems, it is necessary to formulate boundary conditions on the fracture front.

In the present paper, we consider the results of the numerical analysis of the dynamics of expansion of a spherical cavity, with the limiting rate of growth of an individual crack being utilized as the closing condition for the system of boundary conditions on the fracture front. This analysis shows that the critical static breaking stresses move at their "phase" velocity ahead of the actual fracture front. Thus, according to the calculations, it occurs as if the fracture delays. When calculated in the close nearness before the fracture front, the same stress critical combination involves substantially higher dynamic strength values. These strength values are the functionals of the problem (test) rather than material constants.
References
1.  V. N. Rodionov, I. A. Sizov, and V. N. Tsvetkov, Fundamental Geomechanics [in Russian], Nedra, Moscow, 1986.
2.  V. N. Nikolaevskii, Mechanics of Porous and Fractured Media [in Russian], Nedra, Moscow, 1984.
3.  V. N. Nikolaevskii, "The dynamics of fracture fronts in brittle bodies," Izv. AN SSSR. MTT [Mechanics of Solids], No. 5, pp. 106-115, 1980.
4.  J. F. Cuderman, "Multiple fracturing experiments- propellant and borehole consideration," SPE/DOE Paper, No. 10845, pp. 535-546, 1982.
5.  W. G. Knauss and K. Ravi-Chandar, "Some basic problems in stress wave dominated fracture," Intern. J. Fracture, Vol. 27, No. 3/4, pp. 127-143, 1985.
6.  R. Kinslow (Editor), High-velocity Impact Phenomena, Academic Press, New York, 1970.
7.  M. Van Theil (Editor), Compendium of Shock Wave Data. UCRL-50108. Volume 2, Lawrence Laboratory, Livermore, 1977.
8.  S. M. Kapustyanskii and V. N. Nikolaevskii, "The parameters of elastoplastic dilatancy model for geomaterials," Zh. Prikl. Mekhaniki i Tekhn. Fiziki, No. 6, pp. 145-150, 1985.
9.  Ya. B. Fridman, Mechanical Properties of Metals [in Russian], Mashinostroenie, 1974.
10.  A. G. Zhilenkov, S. M. Kapustyanskii, and V. N. Nikolaevskii, "Deformation and fracture of a deep borehole when intersecting a weak rock bed," Doklady AN, Vol. 329, No. 2, pp. 163-165, 1993.
11.  M. Wilkins, "Calculation of elastoplastic flows," in Numerical Methods in Hydrodynamics [Russian translations], Mir, Moscow, 1967.
12.  E. V. Zinchenko, V. N. Tsvetkov, and Yu. M. Gokhban, "A possible mechanism of the formation of shock cones induced by a meteorite impact," in Physical Processes in Geospheres: Manifestation and Interaction [in Russian], pp. 299-304, In-t Dinamiki Geosfer RAN, Moscow, 1999.
13.  J. Millet, N. Bourne, and Z. Rosenberg, "Observation of the Hugoniot curves for glasses as measured by embedded stress gauges," J. Applied Phys., Vol. 85, No. 2, pp. 739-741, 1998.
14.  J. C. F. Millet, N. K. Bourne, Z. Rosenberg, and J. E. Field, "Shear strength measurement in a tungsten alloy during shock loading," J. Applied Phys., Vol. 86, No. 12, pp. 6707-6709, 1999.
15.  J. C. F. Millet, K. Tsembells, and N. K. Bourne, "Longitudinal and lateral stress measurements in shock-loaded gabbro and granite," J. Applied Phys., Vol. 87, No. 8, pp. 3678-3682, 2000.
16.  J. C. F. Millet, N. K. Bourne, and Z. Rosenberg, "Direct measurements of strains in a shock-loaded, lead filled glass," J. Applied Phys., Vol. 87, No. 12, pp. 8457-8460, 1999.
17.  J. Millet and N. Bourne, "The shear strength of a shocked borosilicate glass with internal interface," Scripta Mater., Vol. 42, pp. 681-685, 2000.
18.  J. Millet and N. Bourne, "The effect of an internal interface on the shear strength of a shock-loaded, high density glass," Scripta Mater., Vol. 43, pp. 77-82, 2000.
19.  J. C. F. Millet and N. K. Bourne, "Lateral stress measurements in shock-loaded alumina: shear strength and delayed failure," J. Materials Science., Vol. 34, pp. 3400-3414, 2001.
20.  H. He, F. Jing, and X. Jin, "Evaluating the damage in the shock compressed glass coupling with VISAR measurement," Int. J. Impact Eng., Vol. 25, pp. 599-605, 2001.
21.  V. V. Kartuzov, B. A. Galanov, and S. M. Ivanov, "Concept of ultimate fracture velocity in the analysis of spherical cavity expansion in brittle materials: application to penetration problems," Int. J. Impact Eng., Vol. 23, pp. 431-442, 1999.
22.  N. K. Bourne and G. N. Gray, "III. On the failure of shocked titanium diboride," Proc. Roy. Soc. Lond., A, Vol. 458, pp. 1273-1284, 2002.
23.  V. N. Nikolaevskii, "Dynamic strength and fracture velocity," in Shock, Explosion, and Fracture [in Russian], pp. 166-203, Mir, Moscow, 1981.
24.  K. B. Broberg, "On transient sliding motion," Geophys. J. Roy. Astron Soc., Vol. 52, pp. 397-432, 1978.
Received 17 January 2002
<< Previous article | Volume 39, Issue 1 / 2004 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100