Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2003-3pp.95-106

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 38, Issue 3 / 2003 | Next article >>
B. E. Pobedrya, "Models of linear viscoelasticity," Mech. Solids. 38 (3), 95-106 (2003)
Year 2003 Volume 38 Number 3 Pages 95-106
Title Models of linear viscoelasticity
Author(s) B. E. Pobedrya (Moscow)
Abstract For the description of motion in continuum mechanics one often resorts to "ideal" models such as a rigid body, ideal fluid, linearly elastic body, etc. However, in order to describe phenomena connected with energy being spent on overcoming internal and external friction, heat losses, and environment resistance, one has to introduce modified models which in some sense should describe dissipation [1-3].

In this work, we consider models of linear viscoelasticity based on fractional differentiation.
References
1.  D. M. Klimov, "Decay of free vibrations of gyro in gimbals with dry friction," Doklady AN SSSR, Vol. 123, No. 3, pp. 410-412, 1958.
2.  B. E. Pobedrya, Numerical Methods in Elasticity and Plasticity [in Russian], Izd-vo MGU, Moscow, 1995.
3.  A. A. Il'yushin and B. E. Pobedrya, Fundamentals of Mathematical Thermoviscoelasticity [in Russian], Nauka, Moscow, 1970.
4.  T. A. Surguladze, "On certain applications of fractional calculus to viscoelasticity," J. Math. Sci., Vol. 112, No. 5, pp. 4517-4557, 2002.
5.  T. D. Shermergor, "Applications of fractional differential operators for the description of hereditary material properties," Zh. Prikl. Mekhaniki i Tekhn. Fiziki, No. 6, pp. 118-121, 1966.
6.  Yu. N. Rabotnov, Fundamentals of Hereditary Solid Mechanics [in Russian], Nauka, Moscow, 1977.
7.  M. M. Dzhirbashyan, Integral Transforms and Representations of Functions on the Complex Plane [in Russian], Nauka, Moscow, 1966.
8.  T. A. Surguladze, "An application of the fractional Green function," Izv. AN. MTT [Mechanics of Solids], No. 1, pp. 53-60, 2001.
9.  A. A. Lokshin and Yu. V. Suvorova, Mathematical Theory of Wave Propagation in Media with Memory [in Russian], Izd-vo MGU, Moscow, 1982.
10.  T. A. Surguladze, "On the hyperbolicity of some one-dimensional equations of motion in viscoelasticity," Matem. Model. Sist. Proces. No. 10, pp. 131-134, 2002.
11.  T. A. Surguladze, "On the hyperbolicity of some three-dimensional equations of motion in viscoelasticity," Vestnik MGU [Bulletin of Moscow State University], Ser.1, Mat. Mekh., No. 4, pp. 61-64, 2002.
12.  Yu. A. Rossikhin and M. V. Shitikova, "Analysis of the dynamical behavior of viscoelastic beams whose rheological models contain fractional derivatives of two different orders," Problems in Mechanics of Inelastic Deformations [in Russian], pp. 281-300, Fizmatgiz, Moscow, 2001.
13.  B. E. Pobedrya, "Models in continuum mechanics," Izv. AN. MTT [Mechanics of Solids], No. 3, pp. 47-59, 2000.
14.  B. E. Pobedrya, "On coupled problems in continuum mechanics," Elasticity and Inelasticity. Volume 2 [in Russian], pp. 224-253, Izd-vo MGU, 1971.
15.  D. L. Bykov and D. N. Konovalov, "Applications of scattered energy functions for the description of deformation and fracture in polymer structures," Elasticity and Inelasticity [in Russian], pp. 250-262, Izd-vo MGU, 2001.
Received 10 February 2003
<< Previous article | Volume 38, Issue 3 / 2003 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100