Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 38, Issue 2 / 2003 | Next article >>
N. I. Amel'kin, "To the solid angle theorem," Mech. Solids. 38 (2), 8-12 (2003)
Year 2003 Volume 38 Number 2 Pages 8-12
Title To the solid angle theorem
Author(s) N. I. Amel'kin (Moscow)
Abstract A quaternion solution is given for the problem of determining the displacement of a rigid body with a fixed point in terms of the initial and terminal positions of an axis of this body. One of the corollaries of this solution yields the solid angle theorem and its new generalizations.
References
1.  V. Ph. Zhuravlev, Fundamentals of Theoretical Mechanics [in Russian], Nauka, Fizmatlit, Moscow, 1997.
2.  Yu. K. Zhbanov and V. Ph. Zhuravlev, "On some properties of finite rotations of a rigid body subject to a nonholonomic constraint," Izv. AN SSSR. MTT [Mechanics of Solids], No. 1, pp. 9-14, 1978.
3.  V. Ph. Zhuravlev, "The solid angle theorem in dynamics of a rigid body," PMM [Applied Mathematics and Mechanics], Vol. 60, No. 2, pp. 323-326, 1996.
4.  N. I. Amel'kin, Kinematics and Dynamics of a Rigid Body [in Russian], MFTI, Moscow, 2000.
5.  A. Yu. Ishlinskii, Mechanics of Special Types of Gyroscopic Systems [in Russian], Izd-vo AN UkrSSR, Kiev, 1952.
Received 14 December 2000
<< Previous article | Volume 38, Issue 2 / 2003 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100