| | Механика твердого тела Известия Российской академии наук | | Журнал основан
в январе 1966 года
Выходит 6 раз в год
ISSN 1026-3519 |
Архив номеров
Для архивных номеров (2007 г. и ранее)
полные тексты статей
доступны для свободного просмотра и скачивания.
Статей в базе данных сайта: | | 12854 |
На русском (Изв. РАН. МТТ): | | 8044 |
На английском (Mech. Solids): | | 4810 |
|
<< Предыдущая статья | Год 2023. Номер 5 | Следующая статья >> |
Челноков Ю.Н. Кватернионные методы и регулярные модели небесной механики и механики космического полета: локальная регуляризация особенностей уравнений возмущенной пространственной ограниченной задачи трех тел, порождаемых гравитационными силами // Изв. РАН. МТТ. 2023. № 5. С. 27-57. |
Год |
2023 |
Том |
|
Номер |
5 |
Страницы |
27-57 |
DOI |
10.31857/S0572329922600591 | EDN |
QWJVMZ |
Название статьи |
Кватернионные методы и регулярные модели небесной механики и механики космического полета: локальная регуляризация особенностей уравнений возмущенной пространственной ограниченной задачи трех тел, порождаемых гравитационными силами |
Автор(ы) |
Челноков Ю.Н. (Институт проблем точной механики и управления РАН, Саратов, Россия, chelnokovyun@gmail.com) |
Коды статьи |
УДК 531.3 |
Аннотация |
Изучается проблема локальной регуляризации дифференциальных уравнений возмущенной пространственной ограниченной задачи трех тел: устранения порождаемых силами гравитации особенностей типа сингулярности (деления на ноль) дифференциальных уравнений возмущенного пространственного движения материальной точки M, имеющей пренебрежимо малую массу, в окрестностях двух гравитирующих точек M0 и M1 с помощью записи уравнений движения во вращающихся системах координат, использования новых регулярных переменных и регуляризующего преобразования времени. Получены различные системы регулярных кватернионных дифференциальных уравнений (РКДУ) этой задачи. В качестве переменных в этих уравнениях выступают следующие группы переменных: 1) четырехмерные переменные Кустаанхеймо-Штифеля, кеплеровские энергии и время t, 2) расстояния от точки M до точек M0 и M1, модули векторов моментов скоростей точки M относительно точек M0 и M1, кеплеровские энергии, время t и параметры Эйлера (Родрига-Гамильтона), характеризующие ориентации орбитальных систем координат в инерциальной системе координат; 3) двухмерные переменные Леви-Чивита, описывающие движение точки M в идеальных системах координат, кеплеровские энергии, время t и параметры Эйлера, характеризующие ориентации идеальных систем координат в инерциальной системе координат и являющиеся оскулирующими элементами (медленно изменяющимися переменными) для движения точки M в окрестности гравитирующей точки M0 или M1 соответственно. Для построения РКДУ в качестве исходных использованы уравнения возмущенной пространственной ограниченной задачи трех тел, записанные или в неголономных (азимутально свободных), или в орбитальных, или в идеальных системах координат; в качестве новых независимых переменных использованы "фиктивные" времена τ0 и τ1 (т.е. использованы регуляризующие дифференциальные преобразования времени Зундмана) или угловые переменные φ0 и φ1, традиционно используемые при изучении орбитального движения в составе полярных координат. Для согласования двух используемых в окрестностях гравитирующих точек M0 и M1 независимых переменных использованы дополнительные дифференциальные уравнения.
Полученные различные локально регулярные кватернионные дифференциальные уравнения возмущенной пространственной ограниченной задачи трех тел позволяют разработать регулярные аналитические и численные методы изучения движения тела пренебрежимо малой массы в окрестностях двух других тел, имеющих конечные массы, а также позволяют построить регулярные алгоритмы численного интегрирования этих уравнений. Уравнения могут быть эффективно использованы для изучения орбитального движения небесных и космических тел и космических аппаратов, для прогноза их движения, а также для решения задач управления орбитальным движением космических аппаратов и решения задач инерциальной навигации в космосе. |
Ключевые слова |
регулярные кватернионные модели (уравнения траекторного движения) небесной механики и механики космического полета (астродинамики), возмущенная пространственная ограниченная задача трех тел, параметры Эйлера (Родрига-Гамильтона), кватернион поворота Гамильтона, переменные Кустаанхеймо-Штифеля и Леви-Чивита, космический аппарат, неголономная, орбитальная и идеальная системы координат |
Поступила в редакцию |
29 июля 2022 | После доработки |
15 сентября 2022 | Принята к публикации |
19 сентября 2022 |
Получить полный текст |
|
<< Предыдущая статья | Год 2023. Номер 5 | Следующая статья >> |
|
Если Вы обнаружили опечатку или неточность на странице сайта, выделите её и нажмите Ctrl+Enter
|
|