Механика твердого тела (о журнале) Механика твердого тела
Известия Российской академии наук
 Журнал основан
в январе 1966 года
Выходит 6 раз в год
ISSN 0572-3299

Русский Русский  English English  О журнале | Номера | Для авторов | Редколлегия | Подписка | Контакты
 


ИПМех РАНХостинг предоставлен
Институтом проблем
механики 
им. А.Ю. Ишлинского РАН

Архив номеров

Для архивных номеров (2007 г. и ранее) полные тексты статей pdf доступны для свободного просмотра и скачивания.

Статей в базе данных сайта: 9121
На русском (Изв. РАН. МТТ): 6471
На английском (Mech. Solids): 2650

<< Предыдущая статья | Год 2022. Номер 4 | Следующая статья >>
Васильев В.В., Федоров Л.В. Функции напряжений в теории упругости // Изв. РАН. МТТ. 2022. № 4. С. 103-113.
Год 2022 Том   Номер 4 Страницы 103-113
DOI 10.31857/S0572329922040122
Название
статьи
Функции напряжений в теории упругости
Автор(ы) Васильев В.В. (Институт проблем механики им. А.Ю. Ишлинского РАН, Москва, Россия, vvvas@dol.ru)
Федоров Л.В. (АО ВПК НПО Машиностроение, Реутов, Россия)
Коды статьи УДК 539.3
Аннотация

Статья посвящена исследованию функций напряжений, позволяющих тождественно удовлетворить уравнения равновесия классической теории упругости и получить решение в напряжениях. Для получения зависимостей между напряжениями и функциями напряжений используется математический аппарат общей теории относительности, в частности, свойство тензора Эйнштейна тождественно удовлетворять уравнения закона сохранения, являющиеся применительно к теории упругости уравнениями равновесия. При этом метрические коэффициенты риманова пространства, определяемые уравнениями Эйнштейна, интерпретируются как функции напряжений теории упругости. В результате линеаризации уравнений Эйнштейна получены общие соотношения между напряжениями и функциями напряжений в ортогональной системе координат. Рассматриваются функции напряжений, соответствующие декартовой системе координат. Анализируются возможности удовлетворения уравнений равновесия с помощью различных комбинаций функций напряжений - известные системы Максвелла, Морера и другие возможные комбинации, образованные из одной, двух и трех функций. В качестве критерия разрешимости задачи теории упругости в напряжениях используется соответствие количества функций напряжений числу взаимно независимых уравнений совместности деформаций в напряжениях.

Ключевые слова теория упругости, функции напряжений, общая теория относительности
Поступила
в редакцию
18 ноября 2021После
доработки
21 ноября 2021Принята
к публикации
22 ноября 2021
Получить
полный текст
https://www.elibrary.ru/contents.asp?titleid=7828
<< Предыдущая статья | Год 2022. Номер 4 | Следующая статья >>
Система OrphusЕсли Вы обнаружили опечатку или неточность на странице сайта, выделите её и нажмите Ctrl+Enter

119526 Москва, пр-т Вернадского, д. 101, корп. 1, комн. 246 (495) 434-35-38 mtt@ipmnet.ru https://mtt.ipmnet.ru
Учредители: Российская академия наук, Отделение энергетики, машиностроения, механики и процессов управления РАН, Институт проблем механики им. А.Ю. Ишлинского РАН
Свидетельство о регистрации СМИ ПИ № ФС77-82148 от 02 ноября 2021 г., выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций
© Изв. РАН. МТТ
webmaster
Rambler's Top100