| | Механика твердого тела Известия Российской академии наук | | Журнал основан
в январе 1966 года
Выходит 6 раз в год
ISSN 1026-3519 |
Архив номеров
Для архивных номеров (2007 г. и ранее)
полные тексты статей
доступны для свободного просмотра и скачивания.
Статей в базе данных сайта: | | 12895 |
На русском (Изв. РАН. МТТ): | | 8084 |
На английском (Mech. Solids): | | 4811 |
|
<< Предыдущая статья | Год 2017. Номер 1 | Следующая статья >> |
Шамаев А.С., Шумилова В.В. Прохождение плоской звуковой волны через композит из слоев упругого материала и вязкоупругого материала Кельвина-Фойгта // Изв. РАН. МТТ. 2017. № 1. С. 32-44. |
Год |
2017 |
Том |
|
Номер |
1 |
Страницы |
32-44 |
Название статьи |
Прохождение плоской звуковой волны через композит из слоев упругого материала и вязкоупругого материала Кельвина-Фойгта |
Автор(ы) |
Шамаев А.С. (Институт проблем механики им. А.Ю. Ишлинского РАН, Москва, sham@rambler.ru)
Шумилова В.В. (Институт проблем механики им. А.Ю. Ишлинского РАН, Москва, v.v.shumilova@mail.ru) |
Коды статьи |
УДК 534.2:534-18 |
Аннотация |
Рассмотрена задача о прохождении плоской звуковой волны через плоский слой композита толщины h. Данный композит состоит из периодически повторяющихся слоев упругого материала и вязкоупругого материала Кельвина-Фойгта, причем все слои композита либо параллельны, либо перпендикулярны фронту падающей волны. Кроме того, сделано предположение, что толщина каждого отдельного слоя композита намного меньше как длины звуковой волны, так и толщины h всего композита. Для исследования поставленной задачи использована усредненная модель композита, с помощью которой найдены коэффициенты отражения и прозрачности, а также изменение уровня интенсивности звука при прохождении его через слой композита толщины h. |
Ключевые слова |
звуковая волна, слоистый композит, коэффициент отражения, коэффициент прозрачности, интенсивность звука |
Список литературы |
1. | Бахвалов Н.С., Панасенко Г.П. Осреднение процессов в периодических средах. М.: Наука, 1984. 352 с. |
2. | Победря Б.Е. Механика композиционных материалов. М.: Изд-во МГУ, 1984. 336 с. |
3. | Кристенсен Р. Введение в механику композитов. М.: Мир, 1982. 336 с. |
4. | Бардзокас Д.И., Зобнин А.И. Математическое моделирование физических процессов в композиционных материалах периодической структуры. М.: Едиториал УРСС, 2003. 376 с. |
5. | Шамаев А.С, Шумилова В.В. О спектре одномерных колебаний композита, состоящего из слоев упругого и вязкоупругого материалов // Сиб. журн. индустр. математики. 2012. Т. 15. № 4. С. 124-134. |
6. | Шамаев А.С., Шумилова В.В. О спектре одномерных колебаний в среде из слоев упругого материала и вязкоупругого материала Кельвина-Фойгта // Журн. вычисл. матем. и матем. физ. 2013. Т. 53. № 2. С. 282-290. |
7. | Ильюшин А.А., Победря Б.Е. Основы математической теории термовязкоупругости. М.: Наука, 1970. 280 с. |
8. | Дюво Г., Лионс Ж.-Л. Неравенства в механике и физике. М.: Наука, 1980. 384 с. |
9. | Победря Б.Е., Георгиевский Д.В. Основы механики сплошной среды. Курс лекций. М.: Физматлит, 2006. 272 с. |
10. | Бреховских Л.М., Годин О.А. Акустика слоистых сред. М.: Наука, 1989. 416 с. |
|
Поступила в редакцию |
03 апреля 2014 |
Получить полный текст |
|
<< Предыдущая статья | Год 2017. Номер 1 | Следующая статья >> |
|
Если Вы обнаружили опечатку или неточность на странице сайта, выделите её и нажмите Ctrl+Enter
|
|