1. | Suarez-Martinez I., Grobert N., Ewels C.P. Nomenclature of sp2 carbonnanoforms // Carbon. 2012. V. 50. P. 741-747. |
2. | Buehler M.J. Atomistic Modeling of Materials Failure. N.Y.: Springer, 2008. 488 p. |
3. | Liu W.K., Karpov E.G., Park U.S. Nano Mechanics and Materials: Theory, Multiscale Methods and Applications. Chichester: Wiley, 2006. 460 p. |
4. | Rafli-Tabar H. Computational Physics of Carbon Nanotubes. Cambridge: Cambridge Univ. Press, 2008. 493 p. |
5. | Yakobson B.I., Couchman L.S. Carbon Nanotubes: Supramolecular Mechanics // Dekker Encyclopedia of Nanoscience and Nanotechnology. N.Y.: Marcel Dekker, 2004. P. 587-601. |
6. | Zhang J.Z., Wang Z.L., Liu J., Chen S., Liu G.Y. Self-Assembled Nanostructures. N.Y.: Kluwer Acad. PubL, 2004. |
7. | Раков Э.Г. Нанотрубки и фуллерены. М.: Логос, 2006. 374 с. |
8. | Еремеев В.А., Иванова Е.А., Морозов Н.Ф. Механические проблемы в нанотехнологии // Изв. Сарат. ун-та Сер. Математика. Механика. Информатика. 2008. Т. 8. № 3. С. 26-32. |
9. | Кривцов A.M. Деформация и разрушение твердых тел с микроструктурой. М.: Физматлит, 2007. 304 с. |
10. | Wackerfuß J. Molecular mechanics in the context of the finite element method // Int. J. Numer. Meth. Engng. 2009. V. 77. № 7. P. 969-997. |
11. | Belytschko Т., Xiao S.P., Schatz G.C., Ruoff R.S. Atomistic simulations of nanotube fracture // Phys. Rev. B. 2002. V. 65. P. 235430. |
12. | Zhang C.-L., Shen H.-S. Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation // Carbon. 2006. V. 44. P. 2608-2616. |
13. | Batra R.C., Gupta S.S. Wall thickness and radial breathing modes of single-walled carbon nanotubes // Trans. ASME. J. Appl. Mech. 2008. V. 75. P. 061010. |
14. | Ansari R., Sahmani S., Rouhi H. Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions // Phys. Lett. A. 2011. V. 375. № 9. P. 1255-1263. |
15. | Khoei A.R., Ban E., Banihashemi P., Abdolhosseini Qomi M.J. Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes // Materials Sci. and Eng-ng C. 2011. V. 31. № 2. P. 452-457. |
16. | Song H.Y., Zha X.W. Molecular dynamics study of effects of nickel coating on torsional behavior of single-walled carbon nanotube // Physica B. 2011 V. 406. P. 992-995. |
17. | Sun F.W., Li H. Torsional strain energy evolution of carbon nanotubes and their stability with encapsulated helical copper nanowires // Carbon. 2011. V. 49. P. 1408-1415. |
18. | Pugno N.M., Elliott J.A. Buckling of peapods, fullerenes and nanotubes // Physica E. 2012. V. 44. P. 944-948. |
19. | Silvestre N., Faria В., Lopes G.N.C. A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes // Composite Structures. 2012. V. 94. P. 1352-1358. |
20. | Korobeynikov S.N. Buckling criteria of atomic lattices // CD ICF 11 full papers: The 11-th Int. Conf. on Fracture. Turino. / Ed. A. Carpinteri. 2005. Sect. 30 'Nano- or Micro-scale', ID 5597. |
21. | Korobeynikov S.N. Nonlinear equations of deformation of atomic lattices // Arch. Mech. 2005. V. 57. № 6. P. 457-475. |
22. | Odegard G.M., Gates T.S., Nicholson L.M., Wise E. Equivalent-continuum modeling of nano-structured materials // Composites Sci. and Technol. 2002. V. 62. № 14. P. 1869-1880. |
23. | Gates T.S., Odegard G.M., Frankland S.J.V., Clancy T.C. Computational materials: multi-scale modeling and simulation of nanostructured materials // Composites Sci. and Technol. 2005. V. 65. №15-16. P. 2416-2434. |
24. | Гольдштейн Р.В., Ченцов А.В. Дискретно-континуальная модель нанотрубки // Изв. РАН. МТТ 2005. № 4. С. 57-74. |
25. | Гольдштейн Р.В., Ченцов А.В., Кадушников P.M., Штуркин Н.А. Методы и метрологическое обеспечение механических испытаний нано- и микромасштабных объектов, материалов и изделий нанотехнологий // Российские нанотехнологии. 2008. Т. 3. № 1-2. С. 114-124. |
26. | Arroyo M., Belytschko T. An atomistic-based finite deformation membrane for single layer crystalline films // J. Mech. Phys. Solids. 2002. V. 50. P. 1941-1977. |
27. | Arroyo M., Belytschko T. A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes // Mechanics of Materials. 2003. V. 35. № 3-6. P. 193-215. |
28. | Dluzewski P., Traczykowski P. Numerical simulation of atomic positions in quantum dot by means of molecular statics // Arch. Mech. 2003. V. 55. № 5-6. P. 393-406. |
29. | Gupta S.S., Batra R.C. Elastic properties and frequencies of free vibrations of single-layer graphene sheets // J. Computat. and Theoret. Nanoscience. 2010. V. 7. P. 1-14. |
30. | Коробейников С.Н. Применение метода конечных элементов к решению нелинейных задач по деформированию и потере устойчивости атомных решеток. Новосибирск, 1997. (Препринт РАН. Сиб. отд-ние. Институт гидродинамики; № 1-97). |
31. | Korobeinikov S.N. The numerical solution of nonlinear problems on deformation and buckling of atomic lattices // Int. J. Fracture. 2004. V. 128. P. 315-323. |
32. | Liu В., Huang Y., Jiang H., Qu S., Hwang K.C. The atomic-scale finite element method // Comput. Methods Appl. Mech. Engrg. 2004. V. 193. P. 1849-1864. |
33. | Leung A.Y.T., Guo X., He X.Q. Postbuckling of carbon nanotubes by atomic-scale finite element // J. Appl. Phys. 2006. V. 99. P. 124308. |
34. | Аннин Б.Д., Коробейников С.Н., Бабичев А.В. Компьютерное моделирование выпучивания на-нотрубки при кручении // Сиб. журн. индустр. математики. 2008. Т. 11. № 1. С. 3-22. |
35. | Аннин Б.Д., Алехин В.В., Бабичев А.В., Коробейников С.Н. Компьютерное моделирование контакта нанотрубок // Изв. РАН. МТТ. 2010. № 3. С. 56-76. |
36. | Ansari R., Rouhi S. Atomistic finite element model for axial buckling of single-walled carbon nanotubes // Physica E. 2010. V. 43. P. 58-69. |
37. | Avila A.F., Eduardo A.C., Neto A.S. Vibrational analysis of graphene based nanostructures // Computers and Structures. 2011. V. 89. P. 878-892. |
38. | Fakhrabadi M.M.S., Samadzadeh M., Rastgoo A., Yazdi M.H., Mashhadi M.M. Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural network // Physica E. 2011. V. 44. P. 565-578. |
39. | Fakhrabadi M.M.S., Khanib N., Omidvarc R., Rastgoo A. Investigation of elastic and buckling properties of carbon nanocones using molecular mechanics approach // Comput. Mater. Sci. 2012. V. 61. P. 248-256. |
40. | Firouz-Ahadi R.D., Hosseinian A.R. Free vibrations of single-walled carbon nanotubes in the vicinity of a fully constrained graphene sheet // Comput. Mater. Sci. 2012. V. 53. P. 12-17. |
41. | Giannopoulos G.I., Kakavas P.A., Anifantis N.K. Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach // Comput. Mater. Sci. 2008. V. 41. P. 561-569. |
42. | Hu N., Nunoya K, Pan D., Okabe Т., Fukanaga H. Prediction of buckling characteristics of carbon nanotubes // Int. J. Solids Structures. 2007. V. 44. P. 6535-6550. |
43. | Kang Z., Li M., Tang Q. Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis // Comput. Mater. Sci. 2010. V. 50. P. 253-259. |
44. | Lee J.H., Lee B.S. Modal analysis of carbon nanotubes and nanocones using FEM // Comput. Mater. Sci. 2012. V. 51. P. 30-42. |
45. | Lee J.H., Lee B.S., Au F.T.K, Zhangc J., Zeng Y. Vibrational and dynamic analysis of C60 and C30 fullerenes using FEM // Comput. Mater. Sci. 2012. V. 56. P. 131-140. |
46. | Li C.Y., Chou T.W. A structural mechanics approach for the analysis of carbon nanotubes // Int. J. Solids Structures. 2003. V. 40. № 10. P. 2487-2499. |
47. | Liu В., Jiang H., Huang Y., Qu S., Yu M.-F. Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes // Phys. Rev. B. 2005. V. 72. P. 035435. |
48. | Mahmoudinezhad E., Ansari R, Basti A., Hemmatnezhad M. An accurate spring-mass model for predicting mechanical properties of single-walled carbon nanotubes // Comput. Mater. Sci. 2012. V. 62. P. 6-11. |
49. | Nasdala L., Kempe A., Rolfes R. Are finite elements appropriate for use in molecular dynamic simulations // Composites Sci. and Technol. 2012. V. 72. P. 989-1000. |
50. | Parvaneh V., Shariati M., Torabi H. Frequency analysis of perfect and defective SWCNTs // Comput. Mater. Sci. 2011. V. 50. P. 2051-2056. |
51. | Raflee R., Heidarhaei M. Investigation of chirality and diameter effects on the Young's modulus of carbon nanotubes using non-linear potentials // Composite Structures. 2012. V. 94. P. 2460-2464. |
52. | Rouhi S., Ansari R. Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets // Physica E. 2012. V. 44. P. 764-772. |
53. | Saavedra-Flores E.I., Adhikari S., Friswell M.I., Scarpa F. Hyperelastic axial buckling of single wall carbon nanotubes // Physica E. 2011. V. 44. P. 525-529. |
54. | Wernik J.M., Meguid S.A. Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes // Acta Mech. 2010. V. 212. P. 167-179. |
55. | Korobeynikov S.N., Babichev A.V. Numerical simulation of dynamic deformation and buckling of nanostructures // CD ICF Interquadrennial Conf. Full Papers. M.: Institute for Problems in Mechanics, 2007. |
56. | Коробейников С.Н., Бабичев А.В. Выпучивание нанотрубки при внезапном приложении постоянной осевой нагрузки // Математическое моделирование систем и процессов / Сб. научи, тр. № 16. Пермь: Изд-во ПГТУ, 2008. С. 43-54. |
57. | Korobeynikov S.N., Annin B.D., Babichev A. V. Buckling criteria for nanostructures and their applications in computer simulation of nanotube twisting // CD Proc. 18th Europ. Conf. on Fracture. Dresden: Dresden TU, 2010. |
58. | Еремеев В.А., Иванова Е.А., Морозов Н.Ф., Соловьев А.Н. Об определении собственных частот нонообъектов // ДАН. 2006. Т. 406. № 6. С. 756-759. |
59. | Chopra N.G., Benedict L.X., Crespi V.H., Cohen M.L., Louie S.G., Zettl A. Fully collapsed carbon nanotubes // Nature. 1995. V. 377. P. 135-138. |
60. | Wang С.М., Zhang Y.Y., Xiang Y., Reddy J.N. Recent studies on buckling of carbon nanotubes // Ap-pl. Mech. Rev. 2010. V. 63. P. 030804. |
61. | Senga R., Hirahara K., Nakayama Y. Nanotorsional actuator using transition between flattened and tubular states in carbon nanotubesv// Appl. Phys. Lett. 2012. V. 100. P. 083110. |
62. | Girifalco L.A., Hodak M., Lee R.S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential // Phys. Rev. B. 2000. V. 62. P. 13104-13110. |
63. | Cumier A. Computational Methods in Solid Mechanics. Dordrecht: Kluwer Academic Publ., 1994. 412 p. |
64. | Korobeinikov S.N., Agapov V.P., Bondarenko M.I., Soldatkin A.N. The general purpose nonlinear finite element structural analysis program PIONER // Proc. Int. Conf. on Numerical Methods and Applications. Sofia: Publ. House of the Bulgarian Acad, of Sci., 1989. P. 228-233. |
65. | Bathe К-J. Finite Element Procedures. Prentice Hall: New Jersey, 1996. 1037 p. |
66. | Коробейников С.Н. Нелинейное деформирование твердых тел. Новосибирск: Сиб. отд-ние РАН, 2000. 262 с. |
67. | Lee L.H.N. On dynamic stability and quasi-bifurcation // Int. J. Non-Linear Mechanics. 1981. V. 16. P. 79-87. |
68. | Kleiber M., Kotula W., Saran M. Numerical analysis of dynamic quasi-bifurcation // Engineering Computations. 1987. V. 4. P. 48-52. |
69. | Шалашилин В.И., Кузнецов Е.Б. Метод продолжения решения по параметру и наилучшая параметризация. М.: Изд-во URSS, 1999. 224 с. |
70. | PATRAN Users Guide. Santa Ana: MSC.Software Corporation, 2011. 1759 p. |
71. | Бабичев А.В. Автоматизация построения моделей и визуализация результатов численного моделирования деформирования наноструктур // Вычисл. механика сплошных сред. 2008. Т. 1. № 4. С. 21-27. |
72. | Saito R., Fujita М., Dresselhaus G., Dresselhaus M.S. Electronic structure of chiral graphene tubules // Appl. Phys. Lett. 1992. V. 60. P. 2204-2206. |