Архив номеров
Для архивных номеров (2007 г. и ранее)
полные тексты статей
доступны для свободного просмотра и скачивания.
Статей в базе данных сайта: | | 12937 |
На русском (Изв. РАН. МТТ): | | 8084 |
На английском (Mech. Solids): | | 4853 |
|
<< Предыдущая статья | Год 2009. Номер 1 | Следующая статья >> |
Докучаев С.А., Зеленцов В.Б., Сахабудинов Р.В. Об ударе плоского штампа в упругую ортотропную полуплоскость // Изв. РАН. МТТ. 2009. № 1. С. 53-66. |
Год |
2009 |
Том |
|
Номер |
1 |
Страницы |
53-66 |
Название статьи |
Об ударе плоского штампа в упругую ортотропную полуплоскость |
Автор(ы) |
Докучаев С.А. (Ростов на Дону)
Зеленцов В.Б. (Ростов на Дону)
Сахабудинов Р.В. (Ростов на Дону) |
Коды статьи |
УДК 539.3 |
Аннотация |
Для исследования процесса удара твердого тела по поверхности упругого тела из композиционного материала рассматривается нестационарная динамическая контактная задача об ударе жесткого плоского штампа в упругую ортотропную полуплоскость. Задача сводится к решению интегрального уравнения I рода относительно трансформанты Лапласа контактных напряжений под основанием штампа. Приближенное решение интегрального уравнения строится на основе специальной аппроксимации символа ядра интегрального уравнения в комплексной плоскости. Обращение решения интегрального уравнения по Лапласу приводит к определению скалярного поля контактных напряжений на основании штампа, величины силы воздействия штампа на упругую среду, а также поля вертикальных смещений свободной поверхности ортотропной среды вне штампа. Полученные решения позволяют исследовать особенности процесса внедрения штампа в ортотропную среду, ее деформационные свойства. |
Список литературы |
1. | Лехницкий С.Г. Теория упругости анизотропного тела. М.: Наука. 1977. 415 с. |
2. | Горшков А.Г., Тарлаковкий Д.В. Динамические контактные задачи с подвижными границами. М.: Наука. Физматлит. 1995. 351 с. |
3. | Кристенсен Р. Введение в механику композитов. М.: Мир 1982. 334 с. |
4. | Зеленцов В.Б. Об одном асимптотическом методе решения нестационарных динамических контактных задач // ПММ. 1999. Т. 63. Вып. 2. С. 303-311. |
5. | Забрейко П.П., Кошелев А.И., Красносельский М.А. и др. Интегральные уравнения. М.: Наука. 1968. 448 с. |
6. | Нобл Б. Применение метода Винера-Хопф для решения дифференциальных уравнений в частных производных. М.: Изд-во иностр лит. 1962. 279 с. |
7. | Поручиков В.Б. Методы динамической теории упругости. М.: Наука. 1986. 328 с. |
|
Поступила в редакцию |
13 февраля 2006 |
Получить полный текст |
|
<< Предыдущая статья | Год 2009. Номер 1 | Следующая статья >> |