1. | Bezerra L.M., Saigal A.S. A boundary element formulation for the inverse elastostatics problem (IESP) of flaw detection // International Journal for Numerical Methods in Engineering. 1993. V. 36. P. 2189-2202. |
2. | Hsieh S.-C, Mura T. Nondestructive cavity identification in structures // International Journal of Solids and Structures. 1993. V. 30. № 12. P. 1579-1587. |
3. | Keat W.D., Larson M.C., Verges M.A. Inverse method of identification for three-dimensional subsurface cracks in a half-space // International Journal of Fracture. 1998. V. 92. P. 253-270. |
4. | Engelhardt M., Schanz M., Stavroulakis G.E., Antes H. Defect identification in 3-D elastostatics using a genetic algorithm // Optimization and Engineering. 2006. V. 7. P. 63-79. |
5. | Ben Ameur H., Burger M., Hackl B. Level set methods for geometric inverse problems in linear elasticity // Inverse Problems. 2004. V. 20. P. 673-696. |
6. | Ben Ameur H., Burger M., Hackl B. Cavity identification in linear elasticity and thermoelasticity // Mathematical Methods in Applied Sciemces. 2007. V. 30. P. 625-647. |
7. | Abes C.J.S., Martins N.F.M. The direct method of fundamental solutions and the inverse Kirsh — Kress method for the reconstruction of elastic inclusions or cavities // Journal of Integral Equations and Applications. 2009. V. 21. P. 153-178. |
8. | Khoddad M., Dashti Ardakani M. Investigation of effect of different boundary conditions on the identification of a cavity inside solid bodies // International Journal of Advanced Design and Manufacturing Technology. 2011. V. 4. P. 9-17. |
9. | Ammari H., Kang H., Nakamura G., Tanuma K. Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion // Journal of Elasticity. 2002. V. 67. P. 97-129. |
10. | Kang H., Kim E., Lee J.-Y. Identification of elastic inclusions and elastic moment tensors by boundary measurements // Inverse Problems. 2003. V. 19. P. 703-724. |
11. | Ammari H., Kang H. Reconstruction of small inhomogeneities from boundary measurements. Lecture Notes in Mathematics. V. 1846. Berlin: Springer-Verlag, 2004. |
12. | Ammari H., Kang H. Polarization and moment tensors: with applications to inverse problems and effective medium theory. Applied Mathematical Sciences. V. 162. New York: Springer-Verlag, 2007. |
13. | Morassi A., Rosset E. Detecting rigid inclusions, or cavities, in an elastic body // Journal of Elasticity. 2003. V. 73. P. 101-126. |
14. | Alessandrini G., Bilotta A., Formica G., Morassi A., Rosset E., Turco E. Evaluating the volume of a hidden inclusion in an elastic body // Journal of Computational and Applied Mathematics. 2007. V. 198. P. 288-306. |
15. | Andrieux S., Ben Abda A., Bui H. Reciprocity principle and crack identification // Inverse Problems. 1999. V. 15. P. 59-65. |
16. | Steinhorst P., Sandig A.-M. Reciprocity principle for the detection of planar cracks in anisotropic elastic material // Inverse Problems. 2012. V. 28. 085010 (24 p). |
17. | Shifrin E.I., Shushpannikov P.S. Identification of a spheroidal defect in an elastic solid using a reciprocity gap functional // Inverse Problems. 2010. V. 26. 055001 (17 p). |
18. | Шифрин Е.И. Идентификация эллипсоидального дефекта в упругом теле по результатам одного испытания на одноосное растяжение (сжатие) // Изв. РАН. МТТ. 2010. № 3. С. 131-142. |
19. | Shifrin E.I., Shushpannikov P.S. Identification of an ellipsoidal defect in an elastic solid using boundary measurements // International Journal of Solids and Structures. 2011. V. 48. № 7-8. P. 1154-1163. |
20. | Shifrin E.I., Shushpannikov P.S. Reconstruction of an ellipsoidal defect in anisotropic elastic solid, using results of one static test // Inverse Problems in Science and Engineering. 2013. V. 21. № 5. P. 781-800. |
21. | Ammari В., Kang H., Kim E., Lim M. Reconstruction of closely spaced small inclusions // SIAM Journal on Numerical Analysis. 2005. V. 42. P. 2408-2428. |
22. | Kang H., Kim E., Lee J.-Y. Numerical reconstruction of a cluster of small elastic inclusions // Inverse Problems. 2007. V. 23. P. 2311-2324. |
23. | Baratchart L., Ben Abda A., Ben Hassen F., Leblond J. Recovery of pointwise sources and small inclusions in 2D domains and rational approximation // Inverse Problems. 2005. V. 21. P. 51-74. |
24. | Bryan K., Krieger R., Trainor N. Imaging of multiple linear cracks using impedance data // Journal of Computational and Applied Mathematics. 2007. V. 200. P. 388-407. |
25. | Hanke M., Rundell W. On rational approximation methods for inverse source problems // Inverse Problems and Imaging. 2011. V. 5. P. 185-202. |
26. | Karageorghis A., Lesnic D., Marin L. The method of fundamental solutions for the detection of rigid inclusions and cavities in plane linear elastic bodies // Computers and Structures. 2012. V. 106-107. P. 176-188. |
27. | Karageorghis A., Lesnic D., Marin L. A moving pseudo-boundary MFS for void detection in two-dimensional thermoelasticity // International Journal of Mechanical Sciences. 2014. V. 88. P. 276-288. |
28. | Shifrin E.I., Shushpannikov P.S. Identification of small well-separated defects in an isotropic elastic body using boundary measurements // International Journal of Solids and Structures. 2013. V. 50. P. 3707-3716. |
29. | Eshelby J.D. The determination of the elastic field of an ellipsoidal inclusion and related Problems // Proc. Roy. Soc. London. 1957. Ser. A. V. 241. № 1226. P. 376-396. |
30. | Asaro R.J. Somigliana dislocations and internal stresses: with application to second phase hardening // International Journal of Engineering Science. 1975. V. 13. P. 271-286. |
31. | Лехницкий С.Г. Теория упругости анизотропного тела. М.: Наука, 1977. 416 с. |
32. | El Badia А., На-Duong T. An inverse source problem in potential analysis // Inverse Problems. 2000. V. 16. P. 651-663. |
33. | Kang H., Lee H. Identification of simple poles via boundary measurements and an application of EIT // Inverse Problems. 2004. V. 20. P. 1853-1863. |
34. | Anderson O.L. Determination and some uses of isotropic elastic constants of polycrystalline aggregates using simple crystal data. In: Physical Acoustic: Principles and Methods / Ed. W. Mason. New York: Academic Press; 1965. = Андерсон О. Определение и некоторые применения упругих постоянных поликристаллических систем, полученных из данных для монокристаллов. В кн.: Физическая акустика / Под ред. У. Мэзона, Т. IIIб. Динамика решетки. М.: Мир, 1968. С. 62-155. |