1. | Bernoulli J.M. Solutions to the problem of the catenary, or funicular curve // Acta Eruditorum. 1691. (English Translation by Pierre Beaudry. Reprinted from FIDELIO Magazine. 2001. V. 10. № 1). |
2. | Irvine H.M. Cable Structures. Cambridge: The MIT Press, 1981. 259 p. |
3. | Broughton P., Ndumbaro P. The Analysis of Cable and Catenary Structures. London: Telford, 1994. 88 p. |
4. | Irvine H.M. Studies in the static and dynamic of simple cable systems. Report № DYNL-108. Pasadena: California Institute of Technology, 1974. |
5. | Fleming J.F. Nonlinear static analysis of cable-stayed bridge structures // Computers and Structures.
1979. V. 10. № 4. P. 621-635. |
6. | Nazmy A.S., Abdel-Ghaffar A.M. Three-dimensional nonlinear static analysis of cable-stayed bridges // Computers and Structures. 1990. V. 34. № 2. P. 257-271. |
7. | Karoumi R. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges // Computers and Structures. 1999. V. 71. № 4. P. 397-412. |
8. | Freire A.M.S., Negrão J.H.O., Lopes A.V. Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges // Computers and Structures. 2006. V. 84. № 31-32. P. 2128-2140. |
9. | Freeman I. A general form of the suspension bridge catenary // Bull. Amer. Math. Soc. 1925. V. 31. № 8. P. 425-429. |
10. | Pugsley A.G. The Theory of Suspension Bridges. London: Edward Arnold, 1957. 136 p. |
11. | Irvine H.M., Caughey T.K. The linear theory of free vibrations of a suspended cable // Proc. Roy. Soc. London. Ser. A. 1974. V. 341. № 1626. P. 299-315. |
12. | Irvine H.M. Statics of suspended cables // J. Eng-ng Mech. Div. ASCE. 1975. V. 101. № 3. P. 187-205. |
13. | Tung D.H., Kudder R.J. Analysis of cables as equivalent two-force members // Eng-ng Journal. AISC. 1968. V. 5. № 1. P. 12-19. |
14. | Levinson D.A., Kane T.R. A usable solution of the hanging cable problem // Computers and structures. 1993. V. 46. № 5. P. 821-844. |
15. | Ozdemir H. A finite element approach for cable problems // International J. Solids and Structures. 1979. V. 15. № 5. P. 427-437. |
16. | Jayaraman H., Knudson W. A curved element for the analysis of cable structures // Computers and Structures. 1981. V. 14. № 3-4. P. 325-333. |
17. | Fried I. Large deformation static and dynamic finite element analysis of extensible cables // Computers and Structures. 1982. V. 15. № 3. P. 315-319. |
18. | Gosling P.D., Korban E.A. A bendable finite element for the analysis of flexible cable structures // Finite Elements in Analysis and De sign. 2001. V. 38. № 1. P. 45-63. |
19. | Wang C., Wang R., Dong S., Qian R. A new catenary cable element // Int. J. Space Structures. 2003. V. 18. № 4. P. 269-275. |
20. | Yang Y.B., Tsay J.Y. Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method // Int. J. Structural Stability and Dynamics. 2007. V. 7.
№ 4. P. 571-588. |
21. | Ren W.-X., Huang M.-G., Hu W.-H. A parabolic cable element for static analysis of cable structures // Eng-ng Comput. 2008. V. 25. № 4. P. 366-384. |
22. | Thai H., Kim S. Nonlinear static and dynamic analysis of cable structures // Finite Elements in Analysis and Design. 2011. V. 47. № 3. P. 237-246. |
23. | Wang C.M., Cheong H.F., Chucheepsakul S. Static analysis of marine cables via shooting-optimization technique // J. Waterways, Port, Coastal and Ocean Eng-ng. 1993. V. 119. P. 450-457. |
24. | Tjavaras A.A., Zhu Q., Liu Y., Triantafyllou M.S., Yue D.K.P. The mechanics of highly extensible cables // J. Sound and Vibrat. 1998. V. 213. № 4. P. 709-737. |
25. | Mehrabi A.B., Tabatabai H. Unified finite difference formulation for free vibration of cables // J. Structural Eng-ng. 1998. V. 124. № 11. P. 1313-1322. |
26. | Vallabhan C. Two-dimensional nonlinear analysis of long cables // J. Eng-ng Mechanics. 2008. V. 134. № 8. P. 694-697. |
27. | Bouaanani N., Ighouba M. A novel scheme for large deflection analysis of suspended cables made of linear or nonlinear elastic materials // J. Advanced Eng-ng Software. 2011. V. 42. № 12. P. 1009-1019. |
28. | Buchanan G.R. Two-dimensional cable analysis // Journal of the Structural Division. ASCE. 1970. V. 96. № 7. P. 1581-1587. |
29. | Valiente A. Symmetric catenary of a uniform elastic cable of neo-Hookean material // J. Eng-ng Mechanics. 2006. V. 132. № 7. P. 747-753. |
30. | Pietrzak J. Matrix formulation of static analysis of cable structures // Computers and Structures. 1978. V. 9. № 1. P. 39-42. |
31. | Monforton G.R., El-Hakim N.M. Analysis of truss-cable structures // Computer and Structures. 1980. V. 11. № 4. P. 327-335. |
32. | Santos H.A.F.A., Almeida Paulo C.I. On a pure complementary energy principle and a force-based finite element formulation for non-linear elastic cables // Int. J. Non-Linear Mechanics. 2011. V. 46. № 2. P. 395-406. |
33. | Baron F., Venkatesan M.S. Nonlinear analysis of cable and truss structures // J. Structural Division ASCE. 1971. V. 97. № 2. P. 679-710. |
34. | Lewis W.J., Jones M.S., Rushton K.R. Dynamic relaxation analysis of the nonlinear static response of pretensioned cable roofs // Computer and Structures. 1984. V. 18. № 6. P. 989-997. |
35. | Kanno Y., Ohsaki M., Ito J. Large-deformation and friction analysis of non-linear elastic cable networks by second-order cone programming // Int. J. Numerical Methods in Eng-ng. 2002. V. 55. № 9. P. 1079-1114. |
36. | Saxon D.S., Cahn A.S. Modes of vibration of a suspended chain // The Quart. J. Mech. and Appl.
Mathematics. 1953. V. 6. № 3. P. 273-285. |
37. | Dominguez R.F., Smith C.E. Dynamic analysis of cable systems // J. Structural Division. ASCE. 1972. V. 92. № 8. P. 1817-1834. |
38. | Bliek A. Dynamic Analysis of Single Span Cables. PhD Thesis, MIT, Cambridge, 1984. 295 leaf. |
39. | Cheng S.P., Perkins N.C. Closed-form vibration analysis of sagged cable/mass suspensions // J. Appl. Mech. 1992. V. 59. № 4. P. 923-928. |
40. | Mesarovic S., Gasparini D.A. Dynamic behavior of nonlinear cable system. I & II // J. Eng-ng Mech. ASCE. 1992. V. 118. № 5. P. 890-920. |
41. | Russell J.C., Lardner T.J. Experimental determination of frequencies and tension for elastic cables // J. Eng-ng Mech. ASCE. 1998. V. 124. № 10. P. 1067-1072. |
42. | Volokh K.Y., Vilnay O., Averbuh I. Dynamics of cable structures // J. Eng-ng Mech. 2003. V. 129. № 2. P. 175-180. |
43. | Impollonia N., Ricciardi G., Saitta F. Statics of elastic cables under 3D point forces // Int. J. Solids and Structures. 2011. V. 48. № 9. P. 1268-1276. |
44. | O’Brien W.T. General solution of suspended cable proble ms // J. Structural Division. ASCE. 1967. V. 94. P. 1-26. |
45. | Irvine H.M., Sinclair G.B. The suspended elastic cable under the action of concentrated vertical loads // Int. J. Solids and Structures. 1976. V. 12. № 4. P. 309-317. |
46. | Huddleston J.V. Computer analysis of extensible cables // J. Eng-ng Mech. Division. ASCE. 1981. V. 107. № EM1. P. 27-37. |
47. | Sinclair G.B., Hodder S.B. Exact solutions for elastic cable systems // Int. J. Solids and Structures.
1981. V. 17. № 9. P. 845-854. |
48. | Sagatun S.I. The elastic cable under the action of concentrated and distributed forces // J. Offshore
Mechanics and Arctic Engng. 2001. V. 123. № 1. P. 43-45. |
49. | Chucheepsakul S., Srinil N., Petchpeart P. A variational approach for threedimensional model of extensible marine cables with specified top tension // Appl. Math. Modelling. 2003. V. 27. № 10. P. 781-803. |
50. | Hoffman J.D. Numerical Methods for Engineers and Scientists. New York: McGraw–Hill, 1992. 825 p. |