1. | Finkelmann H., Коек H.J., Rehage H. Liquid crystalline elastomers - a new type of liquid crystalline material // Makromol. Chem. Rapid Commun. 1981. V. 2. P. 317-322. |
2. | Brand H.R.G., Finkelmann H. Physical properties of liquid crystalline elastomers // Handbook of Liquid Crystals / eds. D. Demus et al. N.Y.: Wiley 1998. P. 277-302. |
3. | Ferry J.D. Viscoelastic Properties of Polymers. N.Y.: Wiley, 1980. 671 p. |
4. | de Gennes P.-G., Prost J. Physics of Liquid Crystals. Oxford: Clarendon Press, 1993. 598 p. |
5. | Donald A.M., Windle A.H. Liquid Crystals Polymers. Cambridge: Cambridge Univ. Press, 1992. 302 p. |
6. | Kupfer J., Finkelmann H. Nematic liquid single crystal elastomers // Makromol. Chem. Rapid Commun. 1991. V. 12. № 12. P. 717-726. |
7. | Kupfer J., Finkelmann H. Liquid crystal elastomer: influence of the orientational distribution of the cross-links on the phase behaviour and reorientation process // Macromol. Chem. Phys. 1994. V. 195. № 4. P. 1353-1367. |
8. | de Gennes P.G. Weak nematic gels // Liquid Crystals of One- and Two-Dimensional Order / eds. W. Helfrich and G. Heppke. Berlin: Springer, 1980. P. 231-237. |
9. | Brand H.R., Pleiner H. Electrohydrodynamics of nematic liquid crystalline elastomers // Physica. 1994. V. A208. № 3-4. P. 359-372. |
10. | Terentjev E.M. Liquid-crystalline elastomers // J. Phys. Condens. Matt. 1999. V. 11. № 24. P. R239-R257. |
11. | Terentjev E.M., Warner M. Linear hydrodynamics and viscoelasticity of nematic elastomers // Eur. Phys. Journal E. 2001. V. 4. P. 343-353. |
12. | Warner M., Terentjev E.M. Liquid Crystal Elastomers. Oxforfd: Clarendon Press6 2003. 407 p. |
13. | Huang Y.Y., Ahir S.V., Terentjev E.M. Dispersion rheology of carbon nanotubes in a polymer matrix // Phys. Rev. B. 2006. V. 73. № 6. P. 125422-1-9. |
14. | Terentjev E.M., Kamotskii I.V., Zakharov D.D., Fradkin L. Propagation of acoustic waves in nematic elastomers // Phys. Rev. E. 2002. V. 66. № 5. P. 770-773. |
15. | Fradkin L., Kamotskii I.V., Terentjev E.M., Zakharov D.D. Low frequency acoustic waves in nematic elastomers // Proc. Roy. Soc. London Ser. A. 2003. V. 459. № 2032. P. 2627-2642. |
16. | Singh B. Reflection of homogeneous elastic waves from free surface of nematic elastomer half-space // J. Phys. D: Appl. Phys. 2007. V. 40. № 2. P. 584-592. |
17. | Schmidtke J., Stille W., Strobl G. Static and dynamic light scattering of a nematic side-group polysi-loxane // Macromolecules. 2000. V. 33. № 8. P. 2922-2928. |
18. | Schoonstein M., Stille W., Strobl G. Effect of the network on the director fluctuations in a nematic side-group elastomer analyzed by static and dynamic light scattering // Eur. Phys. Journal E. 2001. V. 5. P. 511-517. |
19. | Graff K.F. Wave Motion in Elastic Solids. Ohio: State Univ. Press, 1975. 649 p. |
20. | Korn G.A., Korn T.M. Mathematical Handbook for Engineers and Scientists. N.Y.: McGraw-Hill, 1968, 1130 p. |
21. | Альшиц В.И., Герульский В., Любимов В.Н., Радович А. Резонансное возбуждение квазирэлеев-ских волн в пластинах на мягких и жестких субстратах // Кристаллография. 1997. Т. 42. № 1. С. 20-27. |
22. | Shuvalov A.L., Every A.G. Some properties of surface acoustic waves in anisotropic-coated solids, studied by the impedance method // Wave Motion. 2002. V. 36. № 3. P. 257-273. |
23. | Kuznetsova I.E., Zaitsev B.D., Kuznetsova A.S. Acoustic waves in structure piezoelectric plate—polymeric nanocomposite film // Ultrasonics. 2008. V. 48. № 6-7. P. 587-590. |
24. | Du J., Xian K, Yong Y.-K. Love wave propagation in piezoelectric layered structure with dissipation // Ultrasonics. 2009. V. 49. № 2. P. 281-286. |
25. | Захаров Д.Д. Резонансные эффекты распространения осесимметричных фундаментальных мод в композиционных цилиндрических телах с нематическими покрытиями // Акуст. ж. 2011. Т. 57. № 2. С. 252-258. |
26. | Захаров Д.Д., Капцов А.В. Влияние нематических покрытий на распространение фундаментальных мод в слоистых упругих пластинах // Акуст. ж. 2011. Т. 57. № 1. С. 65-73. |
27. | Zakharov D.D. Surface and edge waves in solids with nematic coatings // SAGE J. of Math, and Mechanics of Solids. 2012. V. 17. № 1. P. 67-80. |