| | Механика твердого тела Известия Российской академии наук | | Журнал основан
в январе 1966 года
Выходит 6 раз в год
ISSN 1026-3519 |
Архив номеров
Для архивных номеров (2007 г. и ранее)
полные тексты статей
доступны для свободного просмотра и скачивания.
Статей в базе данных сайта: | | 12804 |
На русском (Изв. РАН. МТТ): | | 8044 |
На английском (Mech. Solids): | | 4760 |
|
<< Предыдущая статья | Год 2006. Номер 1 | Следующая статья >> |
Александров В.М. Продольная трещина в ортотропной упругой полосе со свободными гранями // Изв. РАН. МТТ. 2006. № 1. С. 115-124. |
Год |
2006 |
Том |
|
Номер |
1 |
Страницы |
115-124 |
Название статьи |
Продольная трещина в ортотропной упругой полосе со свободными гранями |
Автор(ы) |
Александров В.М. (Москва) |
Коды статьи |
УДК 539.375 |
Аннотация |
Рассмотрена задача о плоской деформации полосы с продольной трещиной, берега которой нагружены равномерным давлением. Предполагается, что трещина симметрично расположена относительно свободных от напряжений граней полосы. С помощью интегрального преобразования Фурье задача сведена к интегральному уравнению первого рода с сингулярным ядром относительно производной от функции, описывающей раскрытие трещины. Регулярным и сингулярным асимптотическими методами построены решения указанного интегрального уравнения соответственно при больших и малых значениях безразмерного параметра, характеризующего толщину полосы. Приведен конкретный числовой пример. Аналогичная задача о трещине в изотропной полосе рассмотрена ранее в [1,2]. |
Список литературы |
1. | Александров В.М., Смешанны Б.И. О равновесных продольных трещинах в пластинах // Тр. 6-й Всесоюз. конф. по теории оболочек и пластинок. М.: Наука, 1966. С. 20-24. |
2. | Сметании Б.И. Некоторые задачи о щелях в упругом клине и слое // Инж. ж. МТТ. 1968. №2. С. 115-122. |
3. | Лехницкий С.Г. Теория упругости анизотропного тела. М.: Наука. 1977.416 с. |
4. | Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М.: Наука, 1974. 456 с. |
5. | Александров В.М., Сметанин Б.И., Соболь Б.В. Тонкие концентраторы напряжений в упругих телах. М.: Наука, 1993. 224 с. |
6. | Попов Г.Я. Концентрация упругих напряжений возле штампов, разрезов, тонких включений и подкреплений. М.: Наука, 1982. 343 с. |
7. | Зеленцов В.Б. О решении некоторых интегральных уравнений смешанных задач теории изгиба пластин // ПММ. 1984. Т. 48. Вып. 6. С. 983-991. |
8. | Bocher S. Lectures on Fourier Integrals. Princeton: Univ. Press, 1959 |
9. | Брычков Ю.А., Прудников А.П. Интегральные преобразования обобщенных функций. М.: Наука, 1977. 288 с. |
10. | Noble В. Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations. L.: Pergamon Press, 1958. = Нобл Б. Применение метода Винера-Хопфа для решения дифференциальных уравнений в частных производных. М.: Изд-во иностр. лит., 1962. 280 с. |
11. | Диткин В.А., Прудников А.П. Справочник по операционному исчислению. М.: Высш. шк., 1965.467 с. |
12. | Морозов Н.Ф. Математические вопросы теории трещин. М.: Наука, 1984. 256 с. |
13. | Бохнер С. Лекции об интегралах Фурье. М.: Физматлит, 1962. 360 с. |
|
Получить полный текст |
|
Смотреть / Скачать |
pdf (929K) |
<< Предыдущая статья | Год 2006. Номер 1 | Следующая статья >> |
|
Если Вы обнаружили опечатку или неточность на странице сайта, выделите её и нажмите Ctrl+Enter
|
|