Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2023-9pp.3276-3287

Archive of Issues

Total articles in the database: 11262
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8011
In English (Mech. Solids): 3251

<< Previous article | Volume 58, Issue 9 / 2023 | Next article >>
Jiangang Li, Xiao Lei, Huihui Xu, Zhixiang Gao, and Hua Wang, "Size-Dependent Elastic Properties of Nanofilms: Exponentially Decreased Surface Elasticity Model," Mech. Solids. 58 (9), 3276-3287 (2023)
Year 2023 Volume 58 Number 9 Pages 3276-3287
DOI 10.3103/S0025654423601295
Title Size-Dependent Elastic Properties of Nanofilms: Exponentially Decreased Surface Elasticity Model
Author(s) Jiangang Li (School of Physics and Electronic Science, Shanxi Datong University and Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong, 037009 China, Lijiangang1127@163.com)
Xiao Lei (College of Science, Inner Mongolia University of Science and Technology, Baotou, 014010 China)
Huihui Xu (School of Physics and Electronic Science, Shanxi Datong University and Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong, 037009 China)
Zhixiang Gao (School of Physics and Electronic Science, Shanxi Datong University and Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong, 037009 China)
Hua Wang (Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, 030024 China, wanghua001@tyut.edu.cn)
Abstract In this work, we propose a continuum theoretical model to describe the surface-modulated and size-dependent elastic properties of nanofilms. The influence of surface Young’s modulus (surface biaxial modulus) decreases with increasing the distance from the film surface. The decrease law is assumed as exponential in this work. In core-surface and core-shell models, an imaginary interface between the surface area and bulk-like inner core appears. Since the influence of surface elasticity decreases with the distance from the surface layer continually, the interface is non-existent and nonphysical. The present theoretical model eliminates the interface and is proved to be a veritable continuum theory. There is no concept of "bulk-like core area" and "surface area" in current theory. The existence of surface Young’s modulus decrease introduces second and third surface modifications. When the influence of surface Young’s modulus decreases rapidly, i.e. the decrease factor α→∞, the influence of surface Young’s modulus only works near the surface. And then, the current theory will degenerate into a core-surface one. The current theory is used to describe the size-dependent biaxial modulus of Si, diamond, Au and Cu nanofilms. The theoretical prediction gives good agreement with simulated results of these nanofilms. The present study in this paper is envisaged to provide useful insights for the design and application of nanofilm-based devices.
Keywords nanofilms, surface effects, elastic property, Young’s modulus (Some figures may appear in colour only on the online journal)
Received 27 July 2023Revised 07 November 2023Accepted 08 November 2023
Link to Fulltext
<< Previous article | Volume 58, Issue 9 / 2023 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100