Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2018-4pp.464-469

Archive of Issues

Total articles in the database: 4893
In Russian (. . ): 2340
In English (Mech. Solids): 2553

<< Previous article | Volume 53, Issue 4 / 2018 | Next article >>
V.A. Eremeyev, "A Nonlinear Model of a Mesh Shell," Mech. Solids. 53 (4), 464-469 (2018)
Year 2018 Volume 53 Number 4 Pages 464-469
DOI 10.3103/S002565441804012X
Title A Nonlinear Model of a Mesh Shell
Author(s) V.A. Eremeyev (Gdańsk University of Technology (Politechnika Gdańska), 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland; Don State Technical University, pl. Yuriya Gagarina 1, Rostov-on-Don, 344000 Russia, eremeyev.victor@gmail.com)
Abstract For a certain class of elastic lattice shells experiencing finite deformations, a continual model using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the kinematics of the shell is described using six kinematically independent scalar degrees of freedom - the field of displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under consideration as the theory of micropolar shells. Nonlinear equations of state for the surface energy density of the shell deformation are derived. The obtained relations of the continuum model are a special case of the general defining relations of elastic micropolar shells for finite deformations.
Keywords mesh shells, framed curve, micropolar shells, nonlinear elasticity, equations of state
References
1.  V.G. Shukhov, Art of Construction Ed. by R. Grefe, O. Perchi, F. Shukhov, et al. (MIR, Moscow, 1994) [in Russian].
2.  M. Beckh, Hyperbolic Structures: Shukhov's Lattice Towers - Forerunners of Modern Lightweight Construction (John Wiley & Sons, Chichester, 2015).
3.  V.V. Vasiliev, V.A. Barynin, and A.F. Razin, "Anisogrid Lattice Structures - Survey of Development and Application," Comp. Struct. 54 (2-3), 361-370 (2001).
4.  V.V. Vasiliev, V.A. Barynin, and A.F. Razin, "Anisogrid Composite Lattice Structures - Development and Aerospace Application," Comp. Struct. 94 (3), 1117-1127 (2012).
5.  V.V. Vasiliev and A.F. Razin "Prospects for the Use of Mesh Composite Structures in Civil Aviation," Polyot, No. 11-12, 3-12 (2016).
6.  A.V. Azarov, "Continual and Discrete Models of Mesh Composite Cylindrical Shells," Mech. Comp. Mat. Struct. 18 (1), 121-130 (2012).
7.  W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, et al., "Electrospun Nanofibrous Structure: a Novel Scaffold for Tissue Engineering," J. Biomed. Mater. Res. Part A. 60 (4), 613-621 (2002).
8.  Cz. Woźniak, Lattice Surface Structures (PWN, Warsaw, 1970) [in Polish].
9.  M. Kleiber and Cz. Woźniak, Nonlinear Mechanics of Structures (Polish Scientific Publishers and Dordrecht: Kluwer Acadcmic Publishers, Warszawa, 1991)
10.  G.I. Pshenichnov, A Theory of Latticed Plates and Shells (World Scientific, Singapore, 1993).
11.  V.V. Eliseev, Mechanics of Elastic Bodies (Izdat. SPBTU, St. Petersburg, 1999) [in Russian].
12.  S.S. Antman, Nonlinear Problems of Elasticity, 2nd ed. (Springer, New York, 2005).
13.  V.A. Eremeyev, L.P. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics (Springer, Heidelberg, 2013).
14.  A. Libai and J.G. Simmonds, The Nonlinear Theory of Elastic Shells 2nd ed. (Cambridge University Press, Cambridge, 1998).
15.  J. Chróścielewski , J. Makowski, and W.Pietraszkiewicz, Statyka i Dynamika Powłok Wielopłatowych. Nieliniowa Teoria i Metoda Elementów Skończonych (IPPT PAN, Warszawa, 2004) [in Polish].
16.  V.A. Eremeyev and L.M. Zubov, Mechanics of Elastic Shells (Nauka, Moscow, 2008) [in Russian].
17.  S. Burzyński , J. Chróścielewski, K. Daszkiewicz, and W. Witkowski, "Geometrically Nonlinear FEM Analysis of FGM Shells Based on Neutral Physical Surface Approach in 6-Parameter Shell Theory," Compos. Part B: Eng. 107, 203-213 (2016).
18.  S. Burzyński, J. Chróścielewski, and W. Witkowski, "Geometrically Nonlinear FEM Analysis of 6-Parameter Resultant Shell Theory Based on 2-D Cosserat Constitutive Model," ZAMM 96 (2), 191-204 (2016).
19.  J. Chróścielewski, A. Sabik, B. Sobczyk, and W. Witkowski, "Nonlinear FEM 2D Failure Onset Prediction of Composite Shells Based on 6-Parameter Shell Theory," Thin-Walled Struct. 105, 207-219 (2016).
20.  J. Chróścielewski and W. Witkowski, "On Some Constitutive Equations for Micropolar Plates," ZAMM 90 (1), 53-64 (2010).
21.  J. Chróścielewski, W. Pietraszkiewicz, and W. Witkowski, "On Shear Correction Factors in the Non-Linear Theory of Elastic Shells," Int. J. Sol. Struct. 47 (25), 3537-3545 (2010).
22.  W. Pietraszkiewicz, "The Resultant Linear Six-Field Theory of Elastic Shells: What it Brings to the Classical Linear Shell Models?" ZAMM 96 (8), 899-915 (2016).
23.  A.I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
24.  L.P. Lebedev, M.J. Cloud, and V.A. Eremeyev, Tensor Analysis with Applications in Mechanics (World Scientific, New Jersey, 2010).
25.  V.A. Eremeyev and W. Pietraszkiewicz, "Local Symmetry Group in the General Theory of Elastic Shells," J. Elast. 85 (2), 125-152 (2006).
26.  W. Pietraszkiewicz and V.A. Eremeyev, "On Natural Strain Measures of the Non-Linear Micropolar Continuum," Int. J. Sol. Struct. 46 (3-4), 774-787 (2009).
27.  K.C. Valanis and R.F. Landel, "The Strain-Energy Function of a Hyperelastic Material in Terms of the Extension Ratios," J. App. Phys. 38 (7), 2997-3002 (1967).
28.  V.A. Eremeyev, "On Characterization of an Elastic Network within the Six-Parameter Shell Theory," in Shell Structures: Theory and Applications, Ed. by W. Pietraszkiewicz and W. Witkowski (CRC Press, Boca-Raton, 2018), pp. 81-84.
29.  F. dell'Isola and D. Steigman, "A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics," J. Elast. 118 (1), 113-125 (2015).
30.  L. Placidi, E. Barchiesi, E. Turco, and N.L. Rizzi, "A Review on 2D Models for the Description of Pantographic Fabrics," ZAMP 67(5), 121-140 (2016).
Received 01 March 2018
Link to Fulltext https://link.springer.com/article/10.3103/S002565441804012X
<< Previous article | Volume 53, Issue 4 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru http://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Journals on Mechanics Ltd.
© Journals on Mechanics Ltd.
webmaster
Rambler's Top100