Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2016-3pp.256-262

Archive of Issues

Total articles in the database: 4878
In Russian (. . ): 2340
In English (Mech. Solids): 2538

<< Previous article | Volume 51, Issue 3 / 2016 | Next article >>
G.N. Kuvyrkin and I.Yu. Savelieva, "Thermomechanical Model of Nonlocal Deformation of a Solid," Mech. Solids. 51 (3), 256-262 (2016)
Year 2016 Volume 51 Number 3 Pages 256-262
DOI 10.3103/S002565441603002X
Title Thermomechanical Model of Nonlocal Deformation of a Solid
Author(s) G.N. Kuvyrkin (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, fn2@bmstu.ru)
I.Yu. Savelieva (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, inga.savelyeva@gmail.com)
Abstract We use relations of rational thermodynamics of irreversible processes for a continuous medium with intrinsic state parameters and Eringen's model of nonlocal theory of elasticity to study the approach to the construction of mathematical models of thermomechanical processes in a deformable body with regard to the effects of temporal and spatial nonlocality of the continuous medium.
Keywords thermomechanics, nonlocal deformation, heat conduction, intrinsic state parameter, surface heating
References
1.  R. A. Andrievskii and A. V. Ragulya, Nanostructural Materials (Akademiya, Moscow, 2005) [in Russian].
2.  A. N. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].
3.  H. Kobayashi, Introduction to Nanotechnology (BINOM, Moscow, 2005) [in Russian].
4.  Ch. P. Poole Jr. and F. J. Owens, Introduction to Nanotechnology (Wiley, 2003; Tekhnosfera, Moscow, 2006).
5.  R. W. Kelsall (Editor), Nanoscale Science and Technology (Wiley, 2005).
6.  J. Peddieson, G. R. Buchanon, and R. P. McNitt, "Application of Nonlocal Continuum Medium Models to Nanotechnology," Int. J. Engng Sci. 41, 305-312 (2003).
7.  A. M. Krivtsov, Deformation and Failure of Rigid Bodies with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].
8.  I. A. Kunin, Theory of Elastic Media with Microstructure. Nonlocal Theory of Elasticity (Nauka, Moscow, 1975) [in Russian].
9.  M. Onemi, S. Iwasimidzu, K. Genka, et al., Introduction to Micromechanics (Metallurgiya, Moscow, 1987) [in Russian].
10.  V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics (Izdat. MGTU im. Baumana, Moscow, 2008) [in Russian].
11.  V. S. Zarubin and G. N. Kuvyrkin, "Mathematical Modeling of Thermomechanical Processes under Intense Thermal Effect," Teplofiz. Vysokikh Temp. 41 (2), 300-309 (2003) [High Tempr. (Engl. Transl.) 41 (2), 257-265 (2003)].
12.  V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Thermomechanics (Fizmatlit, Moscow, 2002) [in Russian].
13.  V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva, "Mathematical Model of a Nonlocal Medium with Internal State Parameters," Inzh.-Fiz. Zh. 86 (4), 768-773 (2013) [J. Engng Phys. Thermophys. (Engl. Transl.) 86 (4), 820-826 (2013)].
14.  G. N. Kuvyrkin and I. Yu. Savelieva, "Mathematical Model of Heat Conduction of New Structural Materials," Vestnik MGTU im. Baumana. Ser. Estestv. Nauki, No. 3, 72-85 (2010).
15.  V. S. Zarubin and G. N. Kuvyrkin, "A Thermomechanical Model of a Relaxing Solid Body Subjected to Time-Dependent Loading," Dokl. Ross. Akad. Nauk 345 (2), 193-195 (1995) [Dokl. Phys. (Engl. Transl.) 40 (11), 600-602 (1995)].
16.  A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York-Berlin-Heidelberg, 2002).
17.  A. A. Pisano and P. Fuschi, "Closed Form Solution for a Nonlocal Elastic Bar in Tension [J]," Int. J. Solids Struct. 40 (2), 13-23 (2003).
18.  C. Polizzotto, "Nonlocal Elasticity and Related Variational Principles," Int. J. Solids Struct. 38 (2), 7359-7380 (2001).
Received 11 January 2016
Link to Fulltext http://link.springer.com/article/10.3103/S002565441603002X
<< Previous article | Volume 51, Issue 3 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru http://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Journals on Mechanics Ltd.
© Journals on Mechanics Ltd.
webmaster
Rambler's Top100