Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-2pp.161-176

Archive of Issues

Total articles in the database: 11223
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8011
In English (Mech. Solids): 3212

<< Previous article | Volume 51, Issue 2 / 2016 | Next article >>
D.B. Volkov-Bogorodskii and S.A. Lurie, "Solution of the Eshelby Problem in Gradient Elasticity for Multilayer Spherical Inclusions," Mech. Solids. 51 (2), 161-176 (2016)
Year 2016 Volume 51 Number 2 Pages 161-176
DOI 10.3103/S0025654416020047
Title Solution of the Eshelby Problem in Gradient Elasticity for Multilayer Spherical Inclusions
Author(s) D.B. Volkov-Bogorodskii (Institute of Applied Mechanics, Russian Academy of Sciences, Leninskii pr. 32A, Moscow, 117334 Russia, v-b1957@yandex.ru)
S.A. Lurie (Institute of Applied Mechanics, Russian Academy of Sciences, Leninskii pr. 32A, Moscow, 117334 Russia; Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, salurie@mail.ru)
Abstract We consider gradient models of elasticity which permit taking into account the characteristic scale parameters of the material. We prove the Papkovich-Neuber theorems, which determine the general form of the gradient solution and the structure of scale effects. We derive the Eshelby integral formula for the gradient moduli of elasticity, which plays the role of the closing equation in the self-consistent three-phase method. In the gradient theory of deformations, we consider the fundamental Eshelby-Christensen problem of determining the effective elastic properties of dispersed composites with spherical inclusions; the exact solution of this problem for classical models was obtained in 1976.

This paper is the first to present the exact analytical solution of the Eshelby-Christensen problem for the gradient theory, which permits estimating the influence of scale effects on the stress state and the effective properties of the dispersed composites under study. We also analyze the influence of scale factors.
Keywords effective properties of composites, multilayer spherical inclusion, gradient elasticity, Laplace and Helmholtz fundamental solutions, Kelvin inversion transformation, self-consistent three-phase method
References
1.  R. A. Tupin, "Elastic Materials with Couple Stresses," Arch. Rat. Mech. Anal. 11, 385-414 (1962).
2.  R. D. Mindlin, "Micro-Structure in Linear Elasticity," Arch. Rat. Mech. Anal. 16 (1), 51-78 (1964).
3.  R. D. Mindlin, "Second Gradient of Strain and Surface-Tension in Linear Elasticity," Int. J. Solids Struct. 1, 417-438 (1965).
4.  R. D. Mindlin and N. N. Eshel, "On First Strain-Gradient Theories in Linear Elasticity," Int. J. Solids Struct. 4, 109-124 (1968).
5.  S. Kakunai, J. Masaki, R. Kuroda, et al., "Measurement of Apparent Young's Modulus in the Bending of Cantilever Beam by Heterodyne Holographic Interferometry," Exp. Mech. 25 (4), 408-412 (1985).
6.  D. C. C. Lam, F. Yang, A. C. M. Chong, et al., "Experiments and Theory in Strain Gradient Elasticity," J. Mech. Phys. Solids 51, 1477-1508 (2003).
7.  A. W. McFarland and J. S. Colton, "Role of Material Microstructure in Plate Stiffness with Relevance to Microcantilever Sensors," J. Micromech. Microengng 15, 1060-1067 (2005).
8.  E. C. Aifantis, "Gradient Effects at the Macro, Micro and Nano Scales," J. Mech. Behav. Mater. 5 (3), 335-353 (1994).
9.  G. A. Maugin, V. I. Alshits, and H. O. K. Kirchner, "Elasticity in Multilayers: Properties of the Propagation Matrix and Some Applications," Math. Mech. Solids 6, 481-502 (2001).
10.  S. Lurie, P. Belov, D. B. Volkov-Bogorodsky, and N. Tuchkova, "Nanomechanical Modeling of the Nanostructures and Dispersed Composites," Comp. Mater. Sci. 28 (3-4), 529-539 (2003).
11.  S. Lurie, P. Belov, and N. Tuchkova, "The Application of the Multiscale Models for Description of the Dispersed Composites," Int. J. Comp. Mater. Sci. Ser. A 36 (2), 145-152 (2005).
12.  S. Lurie, P. Belov, D. B. Volkov-Bogorodsky, and N. Tuchkova, "Interphase Layer Theory and Applications in the Mechanics of Composite Materials," J. Mat. Sci. 41 (20), 6693-6707 (2006).
13.  S. Lurie, D. B. Volkov-Bogorodsky, V. Zubov, and N. Tuchkova, "Advanced Theoretical and Numerical Multiscale Modeling of Cohesion/Adhesion Interactions in Continuum Mechanics and Its Application for Filled Nanocomposites," Comp. Mater. Sci. 45 (3), 709-714 (2009).
14.  P. A. Belov and S. A. Lurie, "A Continuum Model of Microheterogeneous Media," Prikl. Mat. Mekh. 73 (5), 833-848 (2009) [J. Appl. Math. Mech. (Engl. Transl.) 73 (5), 599-608 (2009)].
15.  S. A. Lurie and Yu. O. Solyaev, "Modeling of Mechanical Properties of Nanostructured Porous Ceramics," Deform. Razrush. Mater., No. 1, 6-16 (2012).
16.  S. A. Lurie, T'yung Fam, and Yu. O. Solyaev, "Gradient Model of Thermoelasticity and Its Applications to the Modeling of Thin-Layer Composite Structures," Mekh. Komp. Mater. Konstr. 18 (3), 440-449 (2012).
17.  S. A. Lurie, A. A. Kasimovskii, Yu. O. Solyaev, and D. D. Ivanova, "Methods for Predicting Effective Thermoelastic Properties of Composite Ceramics Reinforced with Carbon Nanostructures," Int. J. Nanomech. Sci. Technol. 3 (1), 1-14 (2012).
18.  J. D. Eshelby, Continual Theory of Dislocations (Inostr. Lit-ra, Moscow, 1963) [in Russian].
19.  T. Mori and K. Tanaka, "Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions," Acta Metal. 21, 571-574 (1973).
20.  Y. Benveniste, "A New Approach to the Application of Mori-Tonaka Theory in Composite Materials," Mech. Mater. 6, 147-157 (1987).
21.  R. M. Christensen, Introduction to Mechanics of Composite Materials (Wiley, New York, 1979; Mir, Moscow, 1982).
22.  S. A. Lurie, D. B. Volkov-Bogorodsky, A. Leontiev, and E. C. Aifantis, "Eshelby's Inclusion Problem in the Gradient Theory of Elasticity. Applications to Composite Materials," Int. J. Engng Sci. 49, 1517-1525 (2011).
23.  D. B. Volkov-Bogorodskii and S. A. Lurie, "Eshelby Integral Formulas in Gradient Elasticity," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 184-194 (2010) [Mech. Solids (Engl. Transl.) 45 (4), 648-656 (2010)].
24.  R. M. Christensen and K. H. Lo, "Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models," J. Mech. Phys. Solids 27, 315-330 (1979).
25.  E. Hervé and A. Zaoui, "Elastic Behavior of Multiply Coated Fiber-Reinforced Composites," Int. J. Engng Sci. 33 (10), 1419-1433 (1995).
26.  X.-L. Gao and S. K. Park, "Vibrational Formation of Simplified Strain Gradient Elasticity Theory and Its Application to a Pressurized Thick-Walled Cylinder Problem," Int. J. Solids Struct. 44, 7486-7499 (2007).
27.  P. F. Papkovich, Theory of Elasticity (Oborongiz, Moscow-Leningrad, 1939) [in Russian].
28.  W. Nowacki, Theory of Elasticity (PWN, Warszawa, 1970; Mir, Moscow, 1975).
29.  Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1 (McGraw-Hill, New York, 1953; Inostr. Lit., Moscow, 1958).
30.  D. B. Volkov-Bogorodskii, "Approach to Problems of Interaction between Acoustic and Elastic Media by Using the Block Multifield Method," in Dynamical and Technological Problems of Structural and Continuum Mechanics. Proc. 11th Intern. Symp., Vol. 2 (MAI, Moscow, 2005), pp. 17-23 [in Russian].
31.  D. B. Volkov-Bogorodskii, "Application of Analytic Calculations Based on the Block Method in Coupled Problems of Continuum Mechanics," in Proc. All-Russia Science-Practical Conference "Engineering Systems -2008" Moscow, April 7-11, 2008 (Izdat. RUDN, Moscow, 2008), pp. 123-138 [in Russian].
32.  M. E. Gurtin and A. I. Murdoch, "Surface Stress in Solids," Int. J. Solids Struct. 14 (6), 431-440 (1978).
33.  Y. Z. Povstenko, "Theoretical Investigation of Phenomena Caused by Heterogeneous Surface Tension in Solids," J. Mech. Phys. Solids 41, 1499-1514 (1993).
34.  H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, "Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities with Interface Stress," J. Mech. Phys. Solids 53, 1574-1596 (2005).
35.  A. I. Murdoch, "Some Fundamental Aspects of Surface Modeling," J. Elasticity 80, 33-52 (2005).
36.  R. V.  A. Gorodtsov, and K. V. Ustinov, "On the Construction of Surface Elasticity Theory for the Plane Boundary," Fiz. Mezomekh. 16 (4), 75-83 (2013).
37.  P. Belov and S. A. Lurie, Mathematical Theory of Defective Media. Gradient Elasticity. Formulations. Hierarchy. Comparative Analysis. Applications (Plenum Academic Publishing, 2014).
Received 23 January 2014
Link to Fulltext
<< Previous article | Volume 51, Issue 2 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100