Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-6pp.657-665

Archive of Issues

Total articles in the database: 11223
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8011
In English (Mech. Solids): 3212

<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
D.N. Kazakov, O.E. Kozelkov, A.S. Maiorova, S.N. Malyugina, S.S. Mokrushin, and A.V. Pavlenko, "Dynamic Properties of Zirconium Alloy E110 under Shock-Wave Loading of Submicrosecond Duration," Mech. Solids. 49 (6), 657-665 (2014)
Year 2014 Volume 49 Number 6 Pages 657-665
DOI 10.3103/S0025654414060077
Title Dynamic Properties of Zirconium Alloy E110 under Shock-Wave Loading of Submicrosecond Duration
Author(s) D.N. Kazakov (Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, ul. Vasil'eva 13 (a/ya 245), Snezhinsk, 456770 Russia, dep5@vniitf.ru)
O.E. Kozelkov (Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, ul. Vasil'eva 13 (a/ya 245), Snezhinsk, 456770 Russia, dep5@vniitf.ru)
A.S. Maiorova (Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, ul. Vasil'eva 13 (a/ya 245), Snezhinsk, 456770 Russia, ann_may@mail.ru)
S.N. Malyugina (Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, ul. Vasil'eva 13 (a/ya 245), Snezhinsk, 456770 Russia, svetlana_malyugina@mail.ru)
S.S. Mokrushin (Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, ul. Vasil'eva 13 (a/ya 245), Snezhinsk, 456770 Russia, avpavlenko@vniitf.ru)
A.V. Pavlenko (Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, ul. Vasil'eva 13 (a/ya 245), Snezhinsk, 456770 Russia, avpavlenko@vniitf.ru)
Abstract The results of stress wave measurements under shock-wave loading of specimens of zirconium alloy W110 of thickness from 0.5 to 8 mm at normal and elevated temperatures are presented. The duration of shock loading pulses varied from ~0.05 to 1 μs with amplitude from 3.4 to 23 GPa. The free surface velocity profiles were registered by interferometric velocimeters VISAR and PDV with nanosecond time resolution. The results of measurement of the elastic precursor decay were used to determine the plastic strain rate behind its front, which decreases from 106 s−1 at a distance of 0.46 mm to 2×104 s−1 at a distance of 8 mm in the course of propagation. The spall strength values at normal and elevated temperatures were obtained, and its dependencies on the strain rate in the range from 105 to 106 s−1 were constructed. The three-wave configuration of the shock wave caused by the polymorphic transformation as α→ω was registered under a shock compression pressure of 10.6 GPa.
Keywords shock wave, spall strength, dynamic elasticity limit, strain rate, polymorphic transformation, VISAR, PDV
References
1.  G. I. Kanel, V. E. Fortov, and S. V. Razorenov, "Shock Waves in Condensed-State Physics," Uspekhi Fiz. Nauk 177 (8), 809-830 (2007) [Phys. Uspekhi (Engl. Transl.) 50 (8), 771-791 (2007)].
2.  E. N. Avrorin, B. K. Vodolaga, V. A. Simonenko, and V. E. Fortov, "Intense Shock Waves and Extreme States of Matter," Uspekhi Fiz. Nauk 163 (5), 1-34 (1993) [Phys. Uspekhi (Engl. Transl.) 36 (5), 337-364 (1993)].
3.  G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].
4.  G. I. Kanel, "Distortion of the Wave Profiles in an Elastoplastic Body upon Spalling," Zh. Prikl. Mekh. Tekhn. Fiz. 42 (2), 194-198 (2001) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 42 (2), 358-362 (2001)].
5.  G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Experimental Profiles of Shock Waves in Condensed Matters (FIZMATLIT, Moscow, 2008) [in Russian].
6.  E. B. Zaretsky and G. I. Kanel, "Plastic Flow in Shock-Loaded Silver at Strain Rates from 104 s−1 to 107 s−1 and Temperatures from 296 K to 1233 K," J. Appl. Phys. 110 (7), 073502 (2011).
7.  E. B. Zaretsky and G. I. Kanel, "Effect of Temperature, Strain, and Strain Rate on the Flow Stress of Aluminum under Shock-Wave Compression," J. Appl. Phys. 112 (7), 073504 (2012).
8.  E. B. Zaretsky and G. I. Kanel, "Response of Copper to Shock-Wave Loading at Temperatures up to the Melting Point," J. Appl. Phys. 114 (8), 083511 (2013).
9.  E. B. Zaretsky and G. I. Kanel, "Tantalum and Vanadium Response to Shock-Wave Loading at Normal and Elevated Temperatures. Non-Monotonous Decay of the Elastic Wave in Vanadium," J. Appl. Phys. 115 (24), 243502 (2014).
10.  M. V. Zhernokletov, V. N. Zubarev, R. F. Trunin, and V. E. Fortov, Experimental Data on Shock Compressibility and Adiabatic Extension of Condensed Matters at High Energy Densities (VNIIEF, Chernogolovka, 1996) [in Russian].
11.  A. V. Pavlenko, S. I. Balabin, O. E. Kozelkov, and D. N. Kazakov, "A One-Stage Light-Gas Gun for Studying Dynamic Properties of Structural Materials in a Range up to 40 GPa," Pribory Tekhn. Experim., No. 4, 122-125 (2013) [Instrum. Experim. Tech. (Engl. Transl.) 56 (4), 482-484 (2013)].
12.  A. V. Pavlenko, S. N. Malyugina, V. V. Pereshitov, and I. N. Lisitsina, "A Visar Two-Channel Laser Interferometric Complex for Studying Properties of Materials under Shock-Wave Loading," Pribory Tekhn. Experim., No. 2, 127-129 (2013) [Instrum. Experim. Tech. (Engl. Transl.) 56 (2), 240-241 (2013)].
13.  S. S. Mokrushin, N. A. Anikin, S. N. Malyugina, et al., "An Interferometer with Time-and-Frequency Signal Compression for Studying Properties of Materials in Shock Wave Experiments," Pribory Tekhn. Experim., No. 4, 107-110 (2014) [Instrum. Experim. Tech. (Engl. Transl.) 57 (4), 475-478 (2014)].
14.  G. V. Garkushin, G. I. Kanel, and S. V. Razorenov, "High Strain Rate Deformation and Fracture of the Magnesium Alloy Ma2-1 under Shock Wave Loading," Fiz. Tverd. Tela 54 (5), 1012-1018 (2012) [Phys. Solid State (Engl. Transl.) 54 (5), 1079-1085 (2012)].
15.  S. V. Razorenov, G. I. Kanel, G. V. Garkushin, and O. N. Ignatova, "Resistance to Dynamic Deformation and Fracture of Tantalum with Different Grain and Defect Structures," Fiz. Tverd. Tela 54 (4), 742-749 (2012) [Phys. Soled State (Engl. Transl.) 54 (4), 790-797 (2012)].
16.  G. E. Duvall, "Propagation of Shock Waves in a Stress-Relaxing Medium," in Stress Waves in Anelastic Solids, Ed. by H. Kolsky and W. Prager (Springer, Berlin, 1964).
17.  P. A. Rigg, C. W. Greeff, M. D. Knudson, and G. T. Gray III, "Influence of Impurities on the Solid-Solid Phase Transition in Zirconium," in Proc. Int. Conf. of American Institute of Physics. Shock Compression of Condensed Matter (2009), pp. 1171-1174.
18.  M. W. Guinan and D. J. Steinberg, "Pressure and Temperature Derivatives of the Isotropic Polycrystalline Shear Modulus for 65 Elements," J. Phys. Chem. Solids 35, 1501-1512 (1974).
Received 30 July 2014
Link to Fulltext
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100