Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-6pp.835-843

Archive of Issues

Total articles in the database: 11223
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8011
In English (Mech. Solids): 3212

<< Previous article | Volume 45, Issue 6 / 2010 | Next article >>
R.V. Goldstein and N.M. Osipenko, "On a Model of Structured Medium Fracture under Compression Conditions," Mech. Solids. 45 (6), 835-843 (2010)
Year 2010 Volume 45 Number 6 Pages 835-843
DOI 10.3103/S0025654410060075
Title On a Model of Structured Medium Fracture under Compression Conditions
Author(s) R.V. Goldstein (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, goldst@ipmnet.ru)
N.M. Osipenko (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, osipnm@mail.ru)
Abstract Extension is necessary in order to initiate brittle fracture in a structured medium. One possible version of the fracture scenario under compression conditions is the development of extension near local concentrators. The dimensions of such regions depend on the level of hydrostatic compression (pressure). As the hydrostatic compression increases, these dimensions decrease approaching the dimension of individual structure elements of the medium (e.g., grains or pores). Under these conditions, the mechanisms of brittle fracture of the medium differ from those in ordinary structural materials.

We consider mechanisms of brittle fracture in compression. It is assumed that the sources of the local extension required for the development of discontinuities are the response of the heterogeneous structure elements of the medium (pores) at which the external compressive stresses can transform into local extensions sufficient for crack propagation. In this case, a characteristic cell representing the scale of the leading process of local fracture is a volume containing two pores. The coalescence of these pores is an elementary fracture process.

An increase in the pressure level increases the role of such fracture processes and leads to the development of ordered fracture structures. Several examples of fracture scenarios under loads that are combinations of homogeneous compression and a concentrated action are used to illustrate the conditions for the development of discontinuities, in whose end regions an elementary act of pore coalescence takes place, and to demonstrate the appearance of linear structures such as curtains or echelons of microcracks.
Keywords echelon of cracks, fracture, structure, compression
References
1.  R. V. Goldstein and N. M. Osipenko, "Fracture and Structure Formation," Dokl. Akad. Nauk SSSR 240 (4), 829-832 (1978).
2.  R. V. Goldstein, V. M. Ladygin, and N. M. Osipenko, "A Model of the Fracture of a Slightly Porous Material under Compression or Tension," Fiz.-Tekh. Probl. Razrab. Polez. Iskopaemykh, No. 1, 3-13 (1974) [J. Mining Sci. (Engl. Transl.) 10 (1), 1-9 (1974)].
3.  W. F. Brace and E. G. Bombolakis, "A Note on Brittle Crack Growth in Compression," J. Geophys. Res. 68 (12), 3709-3713 (1963).
4.  A. V. Dyskin, L. N. Germanovich, and K. B. Ustinov, "Modeling 3D Crack Growth and Interaction in Compression," in Proc. 1st Austral-Asian Congr. Appl. Mech. (ACAM-96), Vol. 1 (Inst. of Engng, Melbourne, 1996), pp. 139-144.
5.  C. G. Sammis and M. F. Ashby, "The Failure of Brittle Porous Solids under Compressive Stress States," Acta Matellurg 34 (3), 511-526 (1986).
6.  R. V. Goldstein, "Fracture under Compression," Uspekhi Mekh. 2 (2), 3-20 (2003).
7.  R. V. Goldstein and N. M. Osipenko, "Structures in Fracture Processes," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 49-71 (1999) [Mech. Solids (Engl. Transl.) 34 (5), 39-57 (1999)].
8.  G. P. Cherepanov, Mechanics of Brittle Failure (Nauka, Moscow, 1974) [in Russian].
9.  Y. Murakami (Editor) Stress Intensity Factors Handbook, Vol. 1 (Pergamon Press, Oxford, 1987; Mir, Moscow, 1990)
10.  G. P. Cherepanov, Rock Fracture Mechanics in Drilling (Nedra, Moscow, 1987) [in Russian].
11.  K. L. Johnson, Contact Mechanics (Univ. Press, Cambridge, 1987; Mir, Moscow, 1989).
Received 10 August 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 6 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100