Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian  English English About Journal | Issues | Editorial Board | Contact Us
 


 Web hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2010-4pp.595-609

Archive of Issues

Total articles in the database: 4725
In Russian (. . ): 2266
In English (Mech. Solids): 2459

<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
Yu.N. Karnet, S.M. Nikitin, E.A. Nikitina, and Yu.G. Yanovskii, "Computer Simulation of Mechanical Properties of Carbon Nanostructures," Mech. Solids. 45 (4), 595-609 (2010)
Year 2010 Volume 45 Number 4 Pages 595-609
DOI 10.3103/S0025654410040096
Title Computer Simulation of Mechanical Properties of Carbon Nanostructures
Author(s) Yu.N. Karnet (Institute of Applied Mechanics, Russian Academy of Sciences, GSP-1, V-334, Leninskii pr-t 32A, Moscow, 119991 Russia)
S.M. Nikitin (Institute of Applied Mechanics, Russian Academy of Sciences, GSP-1, V-334, Leninskii pr-t 32A, Moscow, 119991 Russia)
E.A. Nikitina (Institute of Applied Mechanics, Russian Academy of Sciences, GSP-1, V-334, Leninskii pr-t 32A, Moscow, 119991 Russia, nikitina.ekaterina@gmail.com)
Yu.G. Yanovskii (Institute of Applied Mechanics, Russian Academy of Sciences, GSP-1, V-334, Leninskii pr-t 32A, Moscow, 119991 Russia, iam@ipsun.ras.ru)
Abstract The aim of the present paper is the theoretical investigation of the mechanical properties of carbon nanostructures of graphene and single-wall carbon nanotubes by using nanoscopic and macroscopic approaches. The nanoobject structures in free and deformed states were considered and the corresponding energies were computed in the framework of quantum mechanics methods by using the original software package of semi-empirical programs NDDO/sp-spd (developed in the Institute of Applied Mechanics, Russian Academy of Sciences) in parallel computations. The nanostructural deformations were prescribed in the approximation of the mechano-chemical deformation coordinate. The deformation forces were described by the energy gradients in selected coordinates of microscopic deformations. The mechanical characteristics of nanoobjects such as Young's modulus, rigidity coefficients, works done in deformation, critical stresses, and relative elongations in fracture were calculated in the framework of the macroscopic linear theory of elasticity; the deformation forces determined by quantum mechanical calculations were used in the corresponding relations. It was found that the mechanical characteristics of single-wall carbon nanotubes (CNT) depend on their diameter and chirality, and the deformation properties of a graphene sheet are asymmetric with respect to two normal extension modes directed along the "zigzag" and "armchair" on the sheet edges. The calculated mechanical characteristics are in good agreement with the experimental data known from the literature, in both the values and the deformation asymmetry with respect to different deformation modes.
References
1.  H. W. Kroto, J. R. Heath, and S. O'Brien, "C.C60: Buckminsterfullerene," Nature 318 (6042), 162-167 (1985).
2.  S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature 354 (6348), 56-58 (1991).
3.  K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., "Electric Field Effect in Atomically Thin Carbon Films," Science 306 (5696), 666-669 (2004).
4.  F. Liu, P. Ming, and J. li, "Ab Initio Calculation of Ideal Strength Instability of Graphene under Tension," Phys. Rev. B 76 (6), 064120 (2007).
5.  Z. W. Pan, S. S. Xie, L. Lu, et al., "Tensile Tests of Ropes of Very Long Aligned Multiwall Carbon Nanotubes," Appl. Phys. Lett. 74, 3152-3154 (1999).
6.  E. Nernrandez, C. Goze, P. Bernier, and A. Rubio, "Elastic Properties of C and BxCyNz Composite Nanotubes," Phys. Rev. Lett. 80 (20), 4502-4505 (1998).
7.  C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science 321 (5887), 385-388 (2008).
8.  B. I. Yakobson, C. J. Brabec, and J. Bernholc, "Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response," Phys. Rev. Lett. 76 (14), 2511-2514 (1996).
9.  V. M. Harik, "Ranges of Applicability for the Continuum-Beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-Beams?," NASA Langley Research Center. NASA/CR-2001-211013. ICASE Report No. 2001-16.2001.
10.  M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1989).
11.  R. Khare, S. L. Mielke, J. T. Paci, et al., "Coupled Quantum Mechancal/Molecular Mechanical Modeling of the Fracture of Defective Carbon Nanotubes and Graphene Sheets," Phys. Rev. B 75 (7), 075412 (2007).
12.  G. V. Lier, C. V. Alsenoy, V. V. Doren, and P. I. Geerlings, "Ab Initio Study of the Elastic Properties of Single-Walled Carbon Nanotubes and Graphene," Chem. Phys. Lett. 326 (1-2), 181-185 (2000).
13.  E. A. Nikitina, V. D. Khavryutshenko, E. F. Sheka, et al., "Deformation of Poly(Dimethyl-Siloxane) Oligomers under Uniaxial Tension," J. Phys. Chem. A 103 (51), 11355-11365 (1999).
14.  Yu. G. Yanovskii, E. A. Nikitina, Yu. N. Karnet, et al., "Molecular Modeling of Mesoscopic Composite Systems. Structure and Micromechanical Properties," Fizich. Mezomekh. 8 (5), 61-76 (2005) [Phys. Mesomech. (Engl. Transl.)].
15.  Yu. G. Yanovskii, A. N. Vlasov, E. A. Nikitina, and Yu. N. Karnet, "Analysis of Theoretical Strength of Interphase Layers of Adsorption Complexes of Polymer Composite Media," Mekh. Komp. Mater. Konstr. 13 (1), 33-41 (2007) [J. Comp. Mech. Design (Engl. Transl.)].
16.  Yu. G. Yanovskii, F. V. Grigoryev, E. A. Nikitina, et al., "Nanomechanical Properties of Polymer Composite Nanoclusters," Fizich. Mezomekh. 11 (3), 61-74 (2008) [Phys. Mesomech. (Engl. Transl.) 11 (5-6), 247-259 (2008)].
17.  Original Package of Quantum-Mechanics Programs NDDD/sp-spd (Institute of Applied Mechanics, RAS, Certificate of State Registration No. 2009614949, September 10, 2009) implemented in parallel computations.
18.  M. J. S. Dewar and W. J. Thiel, "Ground States of Molecules. The AM1 Method. Approximation and Parameters," Am. Chem. Soc. 99 (15), 4899-4907 (1977).
19.  E. Nikitina, "Computational Modeling of Surfaces and Interfaces of Nanoobjects," Mekh. Komp. Mater. Konstr. 3 (3), 288-331 (2001) [J. Comp. Mech. Design (Engl. Transl.)].
20.  J. C. Meyer, C. Kisielowski, R. Erni, et al., "Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes," Nano Lett. 8 (11), 3582-3586 (2008).
Received 15 January 2010
Link to Fulltext http://www.springerlink.com/content/r22740q1405821g3/
<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mtt@ipmnet.ru http://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Journals on Mechanics Ltd.
© Journals on Mechanics Ltd.
webmaster
Rambler's Top100